Seoul Journal of Business
Volume 3, Number 1

Object —Oriented Development: Patterns,
Interfaces, and Update Semantics=

Sangkyu Rho
Seoul National University

Salvatore T. March

University of Minnesota

Abstract

Object-Orientation has the potential to significantly improve information system
development productivity through the reuse of code and design components. To achieve
this potential, object patterns having similar update semantics must be recognized and
standard interfaces developed for them. We propose six such patterns and demonstrate
their benefits by developing standard interface templates for each. A developer can analyze
the patterns in an object model and quickly configure interfaces and update methods for
an information system using these templates. These templates are implemented as
meta-classes in Smalltalk as part of SOODAS, a Semantic Object-Oriented Data Access
System, which also supports Entity-Relationship semantics and provides a set-level query

language.

I . Introduction

Object-Orientation has the potential to significantly improve information
system development productivity through the reuse of code and design
components. However, its touted benefits have not been fully realized due to
difficulties in building reusable objects, determining which objects can be

* Professor Rho was partially supported by the Institute of Management Research, Seoul
National University.

38 Seoul Journal of Business

reused, and learning how to reuse those objects [Curtis, 1989; Izakowitz and
Kaufman, 1995].

Design patterns are a promising technique for achieving a high level of design
and code reuse [Budinsky et al., 1996; Gamma et al.,, 1995; Pree, 1995; Schmidt
et al., 1996]. A design pattern systematically describes a time-tested solution to a
recurring design problem. A design pattern also describes the applicability,
trade-offs, and consequences of the solution. It may also illustrate how to
implement the solution in a programming language such as Smalltalk or C++.
Therefore, it provides systems developers with a reference of proven design
solutions and guidelines for implementing them.

We apply the concept of design patterns to the development of user interfaces
and update programs for a conceptual object model. Object patterns having
similar update semantics are identified and standard interface templates
developed. We propose six such patterns: Unconstrained Independent,
Constrained Independent, Parent-Child, Full Intersection, Subtype, and Cyclic
Constraint. Although not exhaustive, the use of these patterns facilitates the
learning of object modeling and results in semantically richer object models. It
also significantly reduce development efforts by facilitating the reuse of design
and code components. We demonstrate their benefits by developing standard
interface templates for each. A developer can analyze the patterns in an object
model and quickly configure interfaces and update methods for an information
system using these templates. These templates are implemented as Smalltalk
meta-classes in SOODAS, a Semantic Object-Oriented Data Access System, which
also supports ER semantics and provides a set-level query language [March and
Rho, 1997].

The remainder of this paper is organized as follows. The next section discusses
prior research on design patterns. The following section describes the six patterns
using an example object model. The next sections present the meta-classes used
to implement them and illustrate the use of these classes for developing update
programs. The final section summarizes this research and presents directions for
future research.

II . Prior Research

There has been increasing interests in the use of design patterns and

Object— Oriented Development: Patterns, Interfaces, and Update Semantics 39

frameworks in object-oriented systems development as techniques to improve
productivity. A design pattern systematically describes a general solution to a
recurring design problem [Alexander, 1979; Alexander et al., 1977], while a
framework is, “a set of cooperating classes that make up a reusable design for a
specific class of software” [Gamma, et. al., 1995, p. 26].

Coad [1992] explores the concept of patterns in the context of object-oriented
analysis and design. An object-oriented pattern is a building block for
object-oriented development which consists of a set of classes and their
relationships. Most of his patterns describe how a set of classes can be used to
build conceptual object models when certain conditions hold.

Johnson [1992] applies patterns in documenting HotDraw, a framework for
implementing various kinds of graphic editors. He describes, in an informal way,
how to use patterns to describe a framework. The goal is to help users
understand the framework and effectively apply the patterns it contains.

Gamma et al. {1993, 1995] propose design patterns as a mechanism to express
object-oriented designs. Their patterns describe solutions to recurring design
problems, the rationale behind each solution, hints regarding implementation,
and code examples in C++/Smalltalk. They view these patterns as “reusable
micro-architecture that contribute to an overall system architecture” and as “a
common vocabulary for design.” Schmidt [1995] describes his experience in
applying these design patterns to the development of commercial communications
software. He predicts that patterns will become integrated with frameworks to
form “systems of patterns” which will ultimately form pattern language extensions
to object oriented programming languages (OOPLs).

Budinsky et al. [1996] argues that the implementation of such design patterns
requires significant effort because they must be programmed each time they are
applied and because there may be many trade-offs to consider in their application.
To address this problem they developed a tool that creates class declarations and
definitions that implement the patterns identified by Gamma, et. al. [1993, 1995].
Their tool requires application specific information and choices for applicable
design trade-offs.

In this research, we study conceptual object models to identify object patterns
having similar update semantics and requiring similar interfaces. We develop a
framework for implementing these patterns within SOODAS, a Smalltalk-based
Semantic Object-Oriented Data Access System. Our framework is different from
most of GUI application development tools such as Microsoft Access and Oracle
Designer/2000 in that applications are created by subclassing a set of

40 Seoul Journal of Business

meta-classes rather than by generating codes. The modification of applications is
easier since applications are modified by overloading methods rather than by
modifying generated codes. This also facilitates the evolutionary improvement of
applications since the improvement of the meta-classes will be reflected in
applications developed using the tool. The next section describes our object
patterns. The following section describes our framework and illustrates its use.

M. Object Patterns

Common among object representations, SOODAS [March and Rho, 1997]
supports five basic modeling concepts: class (entityll), attribute, binary
relationship, external identifier, and subclass (subtype). In object models using
these concepts we identify six recurring patterns for developing user interfaces:
Unconstrained Independent, Constrained Independent, Parent-Child, Full
Intersection, Subtype, and Cyclic Constraint. As Coad [1992] points out, these
patterns were identified by carefully observing many object-oriented development
projects rather than by applying theories or logic. They were chosen simply
because they occur frequently in object modeling. Although not exhaustive, these
patterns can significantly reduce development efforts by facilitating the reuse of
design and code components. For each pattern, we present an example,
describing its update semantics and user interface.

1. Unconstrained Independent (Referent)

Pattern: This is a single class pattern where instances of the class exist (can
be added and modified) independently of any other instances in the system. The
class has only attributes (variables) in its identifier(s) and all of its relationships
have maximum cardinality of 1 for itself and minimum cardinality O for the other
class in the relationship. Its relationships may have minimum cardinality of O or
1 for itself and maximum cardinality of 1 or many for the other class. Instances
of the class often serve as referents for one to many relationships (have
minimum cardinality 1 for this class). If so, deletion actions must be specified.

Example: In Figure 1, Department is an Unconstrained Independent (Referent)

1) SOODAS supports Entity-Relationship semantics, hence we use the terms Entity and
Class interchangeably.

Object— Oriented Development: Patterns, Interfaces, and Update Semantics

Unconstrained independent Pattern partitioned Subclass Pattern

Constrained Independent Pattern

Customer

customerN

CustomerType

Place

EstomerType\

customerType
description

T

CustomerT

ePricing

PriceStructur
e

:

ProductPricing

SellProduct

X

Product

productNo
description

price
qoh

Full intersection Pattern

Department

deptNo
deptName

Order

orderN
[s]

d;t;};

Contain

Lineltem

lineNo

quantity
price

Parent/Child Pattern

Class

identifier
aftribute

Employee

Report: empNo

empName

-

P lsA&

SalesPerson SalariedEmployee
commisionRat salary /
Obtain
Payment
checkNo
dateReceived
amount
Cyclic +
onstrain
Credi \tl Apply
OrderPayment
lineNo
amount /

Parent/Child Pattern

Relationship FM
o

identifier

Supertype/Subtype

Figure 1. An Example Object Model with Patterns

41

42 Seoul Journal of Business

class. It has only attributes (variables) in its identifier, deptNo (denoted by the
fact that it is wunderlined). Its only relationship, Reports, has maximum
cardinality 1 for itself and minimum cardinality O for Employee, the related class.

Update Semantics: Department instances are added and maintained
independently of any other instances in the system. Its instances serve as
referents for Employee instances in the Report relationship, that is, the minimum
cardinality is 1 on Department. If related Employee instances exist then the
deletion action must be specified as either (a) remove related instances (cascade
delete) or (b) disallow.

Interface: Classes conforming to this pattern can be maintained using an
interface such as that shown in Figure 2. The display window lists all instances
in a default format (which can be changed as desired) and contains buttons to
add, delete, find, and edit instances. The update window is used to add or edit
instances.

2. Constrained Independent (Referential)

Pattern: This is a single class pattern where instances of the class reference
instances of at least one other class. The class has only attributes (variables) in
its identifier(s) and has at least one relationship with minimum cardinality O for
itself and a maximum cardinality 1 for the other class. If the minimum
cardinality for the other is 1, then referential integrity constraint(s) exist --
instances of this class cannot exist without the referenced instance(s) of the other
class(es).

Example: In Figure 1, Customer is a Constrained Independent (Referential)
object. It has only attributes (variables) in its identifier, customerNo. It participates
in two relationships, Services and CustomerType, with minimum cardinality O for
itself and 1 for SalesPerson and CustomerType, respectively. That is, Customer
has referential integrity constraints with SalesPerson and CustomerType. A
Customer instance cannot exist without a related SalesPerson instance and a
related CustomerType instance. Customer participates in additional relationships,
Pay and Place, for which it is the referent class.

Update Semantics: Insert or maintenance operations that violate referential
integrity constraints are disallowed. Other update semantics are the same as
those of the Unconstrained Independent pattern.

Interface: Classes conforming to this pattern can be maintained using a single
object display window as in Figure 2.a., and a constrained update window such

Object— Oriented Development: Patterns, Interfaces, and Update Semantics 43

I "jDepaitment Maintenance

depto deptName .

pom Marketing

- | ooz Sales
A voos Accounting

a. Default Display Window for Department

E Department Maintenance '

deptNo

deptName

b. Default Update Window for Department
Figure 2. Default Interface for Department (Unconstrained Independent Pattern)

as one shown in Figure 3. The update window includes a widget (e.g., combo
box) for maintaining each many-one relationship. It displays the legal values for

44 Seoul Journal of Business

the relationship using the familiar “foreign key” concept, i.e., identifiers of the
class on the other side. Widgets maintaining relationships with referential
integrity constraints must display identifiers from the related class and require
the user to select one. Widgets maintaining relationships without referential
integrity constraints include null for instances that do not participate in the
relationship.

§ Customes Maintenance

customerNo

name

address

TypeOFfCustmer

ServicedBy

Figure 3. Default Update Window for Customer (Constrained Independent Pattern)

3. Parent-Child

Pattern: This pattern involves two classes designated Parent and Child. The
Parent has a one to many relationship with the Child with a minimum and
maximum cardinality of 1 on the Parent side. The relationship is part of an
identifier of the Child. Typical instances of the Child are thought of as being a
“part of” a Parent instance. Unlike referential integrity constraints, where the
referent instance can be changed, a Child instance must remain with a single
Parent instance. Both Parent and Child may participate in other relationships.
The Parent-Child pattern is similar to the concept of a composite object, an
object with a hierarchy of exclusive component objects [Kim et al., 1987].

Example: In Figure 1, Order and Lineltem form a Parent-Child pattern. There

Object— Oriented Development: Patterns, Interfaces, and Update Semantics 45

is a one to many relationship between them, Contain, which is part of the
identifier of Lineltem (denoted by the dot on this relationship near the Lineltem
class). Lineltem instances are thought of as being part of a single Order instance.
The combination of an Order instance and its associated Lineltem instances form
a composite object. Both Order and Lineltem participate in other relationships.

Update Semantics: Children instances are inserted through the parent instance
and cannot exist without the parent instance. Children instances are cascade
deleted when the parent instance is deleted.

Interface: Classes conforming to this pattern can be maintained using an
integrated interface for both classes with the child instances represented as
the detail for the parent instance. As illustrated in Figure 4, the interface for
Order contains a button to open the interface for Lineltem. When the
interface for Lineltem is open, it lists the instances related to the selected
Order instance. Any Lineltem instances added using this interface are
automatically related to the currently selected Order instance. Lineltem
instances cannot be moved from one Order instance to another. When an
Order instance is deleted, its related Lineltem instances are also deleted. The
update windows for Order and Lineltem each contain widgets (e.g., combo
boxes) for their other many to one relationships (Place for Order and
SellProduct for Lineltem).

a Order Maintenance

orderNo date PlacedBy ObtainedBy
S0001 210297 coo1 E002
50002 2118797 com E002
S0003 2718297 coo2 E002
50004 2420097 coo3 | . E0D3 ‘

a. Default Display Window for Order

46 Seoul Journal of Business

I "jLineltem Maintenanc

Containedin lineNo quantity price ProductOfl.E

50004 001 5 PO0O01

b. Default Display Window for Lineltem

Figure 4. Default Interface for Order-Lineltem (Parent-Child Pattern)
4. Full Intersection

Pattern: This pattern involves three classes: 2 Entry classes and 1 Full
Intersection class. Each Entry class has a one to many relationship with the Full
Intersection class having minimum cardinality O on the Full Intersection side and
minimum cardinality 1 on the Entry class side. The relationships with the Entry
classes together form the identifier of the Full Intersection class. The Full
Intersection class has one instance for each unique pair of instances of the two
Entry classes.

Example: In Figure 1, CustomerType, PriceStructure and Product form a Full
Intersection pattern. CustomerType and Product are the Entry classes.
PriceStructure is the Full Intersection class. PriceStructure is identified by the
relationships with CustomerType and Product. For each combination of Product
and CustomerType instances, there must be an instance of PriceStructure which
defines the discount rate for that Product instance and CustomerType.

Update Semantics: Inserting an instance of either Entry class requires the
insertion of an instance of the Intersection class for each existing instance of the
other Entry class. Deleting an instance of either Entry class requires the deletion
of all related Intersection class instances. Instances of the Intersection class can

Object— Oriented Development: Patterns, Interfaces, and Update Semantics 47

only be added or deleted through an Entry class instance.

Interface: Classes conforming to this pattern can be maintained using an
interface similar to that for Parent-Child patterns, with the Intersection class
instances represented as the detail for each Entry class. However, when an instance
of an Entry class is added, the Intersection class instances related to it for all
instances of the other Entry class are also added. When an instance of an Entry
class is deleted, all Intersection class instances related to it must be deleted. Figure 5

customerType |description

CT01 Regular
§ cro2 Preferred

PrceStiucture Maintenance

CustomerTypeFo| ProductForPrice | discountRate

Ctoz2 POOO1 D.10

CT02 PO0OO2 0.05

b. Default Display Window for PriceStructure

Figure 5. Default Interface for CustomerType-PriceStructure-Product
(Full Intersection Pattern)

48 Seoul Journal of Business

illustrates an interface for the Full Intersection pattern for PriceStructure through
CustomerType (the interface through Product is similar). The interface for
CustomerType (and Product) are similar to the standard interface for Parent
classes having a button for PriceStructure which opens its display window.
PriceStructure has an instance for each pair of Product and CustomerType
instances. Instances related to the selected CustomerType instance (or the
selected Product instance if the Product display window is used) are included in
the display window. When a new Product instance is added, an instance of
PriceStructure is added for each instance of CustomerType. Similarly, when a
new CustomerType is added, an instance of PriceStructure is added for each
instance of Product. If a Product or CustomerType instance is deleted, all related
PriceStructure instances are deleted as well. Since PriceStructure instances can
only be added and deleted via their related CustomerType and Product instances,
this window does not contain add or delete buttons.

This pattern can be generalized to intersection objects with more than two
entry objects, i.e., classes representing full n-ary relationships.

5. Subclasses

5.1 Partitioned Subclass

Pattern: This pattern involves a class having subclasses such that each
instance of the class must be in exactly one of its subclasses.

Examples: In Figure 1, Employee and its subclasses form a Partitioned
Subclass pattern, denoted by the p inside the subclass triangle. This indicates
that each employee is either a salaried employee or a salesperson and not both. In
the Smalltalk vocabulary, Employee is an abstract class, i.e., it contains no
instances. All of its instances are in one of its subclasses, SalariedEmployee or
SalesPerson which are said to partition their superclass, Employee.

Update Semantics: Inserting an instance of the class requires the instance to
be assigned to exactly one of its subclasses.

Interface: The display window for the class includes all instances of its
subclasses. It has an additional column denoting the subclass of each instance
(Figure 6.a). Furthermore, when an instance is added, a display list is opened
which requires the user to choose the subclass to which the instance belongs
(Figure 6.b). The update window for each subclass includes all attributes and
many side relationships of the class as well as those of the subclass (Figure 6.c).

Object— Oriented Development: Patterns, Interfaces, and Update Semantics 49

Employee Maintenance

ReportsTo

Type empNo empName
SalariedEmploye] E0D1 Employee 1 D001
SalesPerson E002 Employee 2 D002
SalesPerson E003 Employee 3 D002

a. Default Display Window for Employee

| Add which type of Employee?

SalaredEmployes
SalesPerson

b. Employee Type Display List

empNo

empName

salary

ReportsTo

¢. Default Update Window for
SalariedEmployee

Figure 6. Default Interface for Employee (Partitioned Subclass Pattern)

50 Seoul Journal of Business

5.2 Exclusive Subclass

Pattern: This pattern also involves a class with subclasses. It is similar to
partitioned subclasses, however, when an instance is added, it can be assigned
to the class or to one of its subclasses.

Example: There is no example in Figure 1, however, if the p in the subclass
triangle were replaced with an e (exclusive), this would indicate that an
employee can be a salaried employee or a salesperson or neither, i.e., that
SalariedEmployee and SalesPerson form an Exclusive Subclass pattern with
Employee.

Update Semantics: When an instance of the class is inserted, it may be
assigned to the class or to one of its subclasses.

Interface: Similar to the Partitioned Subclass pattern, however, when an
instance is added, the display list requires the users to choose the class or one
of its subclasses for the instance.

6. Cyclic Constraint

Pattern: This pattern involves a set of classes involved in a constrained
relationship loop (or cycle). A constrained relationship loop has one class in
which the relationship paths in each direction are a set of many (and/or one) to
one relationships that, for each instance of the class, converge at a single
instance of the class at the end of each path. Such patterns exist, for example,
when the Child in a Parent-Child pattern is in a time dependent relationship
loop through the Parent. In this case the path through the Parent represents a
transitive dependency specified at a point in time prior to the creation of
instances in the relationship loop representing the basic functional dependencies.
As a result, the set of legal instances for the other relationship of the Child in
the relationship loop are restricted to those reachable through the Parent.

Example: In Figure 1, there is a Cyclic Constraint pattern involving the Parent-
Child pattern Payment and OrderPayment. When a customer makes a payment,
an instance of Payment is created and related to that customer via the
relationship Pay. At a later point in time that payment must be allocated to
orders placed by that same customer. Instances of OrderPayment contain the
allocation of Payment instances to Order instances. The cyclic constraint specifies
that Payment instances can only be allocated to Order instances that are related
to the Customer instance to which the Payment instance is related. Using these
classes and their defined relationships, this constraint can be specified as follows

Object— Oriented Development: Patierns, Interfaces, and Update Semantics 51

(where anOrderPayment is any instance of OrderPayment):
anOrderPayment Apply Pay = anOrderPayment Credit Place.

Where Apply, Pay, Credit, and Place are messages that traverse relationships. In
SOODAS, the corresponding methods are automatically generated when the
database is defined [March and Rho, 1996, 1997].

Update Semantics: From an update perspective, the set of instances to which
an instance can be related must be restricted to those conforming to the given
constraint. The list of Order instances to which an Order-Payment instance can
be related, for example, must be restricted to those that are related to the
Customer instance related to the Payment instance to which the OrderPayment
instance is related.

Interface: Since relationships are maintained via widgets (combo boxes), the
update window for a class designated to have a Cyclic Constraint for a
relationship will generate choices for the relationship that conform to the
specified constraint. Cyclic Constraints are specified as a series of relationships
resulting in the set of legal values for the relationship to which it applies. The
legal choices for the Credit relationship would be specified as the traversal of the
following relationships: Apply Pay Place.

IV. A Framework for Object Patterns

To support the object patterns described in the previous section, a set of
meta-classes are defined. They are: Entitylnterface, Parentinterface, Entrylnterface,
Dependentinterface, Childinterface, and Intersectioninterface. They have been
implemented in Smalltalk as part of SOODAS, a Semantic Object-Oriented Data
Access System [March and Rho, 1996, 1997]|. They generate the types of display
and update windows illustrated in Figures 2 through 7. SOODAS has four
meta-classes: EntityObject, which implements Entities as subclasses of itself
(instance variables are used to represent attributes), Relationship which defines
and maintains relationships, PermanentObject which provides persistence
(EntityObject and Relationship are subclasses of it), and QueryNode which
supports multi-class querying.

A Smalltalk class can have class and instance variables and class and instance
methods. Furthermore, a Smalltalk class can have class-instance variables, that
is class variables with unique values in each of its subclasses. The class
hierarchy for the SOODAS interface system is shown in Figure 7. Model and

52

Object

Moaodel

A

ApplicationModel

Seoul Journal of Business

Notation

Class Name

- {Class Methods

| Class Instance Vars _

Instance Vars

e e e = e e . m. -

Instance Methods

4

Entityinterface

[Entity _ _ ______
CreateinterfacefFor:
windowSpec

instancelist
selectedinstance

find

choicesUsing:

choicesForinstance
Using:

7 TS

Parentinterface

Detailinterface
ChildRelationship

Dependentinterface

b e e e - - - - -

children

delete
Entryinterface

e o o e = e o m owm e =

open:

oneSide

Childinterface

Intersectioninterface

ParentRelationship

b o et o v em aw m wr w am

CreatelnterfaceFor:
parentRelationship:

e = = - . = e - = - o=

EntryRelationship1

EntryRelationship2

[CreateinterfaceFor
entryRelationship:

and:

Figure 7. Meta-Classes

Object— Oriented Development: Patterns, Interfaces, and Update Semantics 53

ApplicationModel are system classes that provide the engine behind the
Model-View-Controller (MVC) architecture used to manage user interfaces
[Goldberg and Robson, 1989; VisualWorks, 1994].

EntityInterface is a subclass of ApplicationModel. It has methods to generate
interface classes for Unconstrained and Constrained Independent patterns and for
Partitioned and Constrained Subclass patterns as subclasses of itself. It also has
methods to define and enforce cyclic constraints.

Parentinterface is a subclass of Entitylnterface. It has methods to generate
interface classes for Parent-Child patterns. The Parent interface class is generated
as a subclass of Parentlnterface. The Child interface class is generated as a
subclass of ChildInterface (see below). ParentInterface also provides methods to
maintain parent-child relationships including cascade delete of Child instances.

Entrylnterface is a subclass of Parentinterface. It has methods to generate
interface classes for Full Intersection patterns. The Entry interface classes are
generated as subclasses of Entrylnterface. The Intersection interface class is
generated as a subclass of Intersectioninterface (see below). EntryInterface provides
a standard interface for Entry classes and creates (cascade deletes) instances of
the Intersection class when an Entry class instance is added (deleted).

ChildInterface and Intersectioninterface provide interfaces for Child classes and
Intersection classes, respectively. They are both defined as subclasses of
Dependentinterface which provides methods to integrate the Child/Intersection
class with its Parent/Entry class(es). Interface classes for Child and Intersection
classes are defined as subclasses of ChildInterface and Intersectionlnterface,
respectively.

The following subsections describe the class and instance variables and
methods of each of these meta-classes. For brevity, we exclude accessor and
assignment methods.

1. Entitylnterface

EntityInterface has one class-instance variable, Entity which contains the class
updated in this interface. It has two class methods. windowSpec answers the
template for the display window (illustrated in Figure 2.a). CreatelnterfaceFor:
aClass creates a subclass of itself named <aClass>Interface. aClass, the
parameter of the message, is the class to be maintained via the generated
windows. It generates and stores the definition of the update window (illustrated
in Figure 3) in a class method of <aClass>Interface named <aClass>Spec. It

54 Seoul Journal of Business

contains an input box for each instance variable of aClass and a combo box for
each one to one relationships and for each one to many relationship in which it
participates on the many side. Thus it generates a standard interface window
corresponding to the familiar “foreign key” notion in relational systems (although
SOODAS uses the Relationship class rather than foreign keys or embedded
objects to represent relationships).

EntityInterface has two instance variables. instanceList contains a value holder
on the display list for the window. Thus it defines the list of instances to be
displayed. selectedInstance contains a value holder on the instance selected
from the display list. It specifies the instance to be acted upon (added, deleted,
edited).

EntityInterface has six instance methods. Four, add, delete, find and edit
correspond to action buttons in the display window. Two, choices-Using: and
choicesForIlnstanceUsing:, are used in combo boxes for relationships. add
checks to see if subtypes must be specified (for Partitioned Subclass and
Exclusive Subclass patterns), creates a new instance, and opens the appropriate
update window. delete removes the instance specified in selectedInstance. find
requests an identifier, finds the instance with that identifier, and stores it in
selectedInstance. edit opens the appropriate update window, displaying the
instance specified in selectedInstance. choicesUsing: relName answers the
selection list for the unconstrained relationship named relName. This includes all
instances of the related class. choicesForIlnstanceUsing: aString answers the
selection list for the cyclic constraint specified in the parameter aString. It
applies the relationship methods specified in aString to the instance specified in
selectedInstance, answering the set of legal instances for the relationship.

To illustrate these concepts, consider the result of the following Smalltalk code
segment:

Entitylnterface Createlnterfacefor: Department.

First, Entitylnterface creates a subclass of itself named Departmentlnterface. It
assigns Department to its class-instance variable, Entity. It generates a class
method named DepartmentSpec containing the specification of the update window
for Department (Figure 2.b).

2. ParentInterface and Entrylnterface

ParentInterface is a subclass of Entitylnterface and thus inherits its class and
instance variables and methods. It has two additional class-instance variables:

Object— Oriented Development: Patterns, Interfaces, and Update Semantics 55

Detaillnterface which holds the interface class of the Chid and
ChildRelationship which holds the Parent-Child relationship. The same
relationship is held in the class-instance variable ParentRelationship in the
interface class of the Child (see ChildInterface below). It has one class method,
CreatelnterfaceFor: aClass childRelationship: relName, which creates a subclass
of Parentinterface for aClass, named <aClass>Interface, where aClass is the
Parent class. It generates and stores the definition of the update window in a
class method of <aClass>Interface named <aClass>Spec. Finally, it sends a
CreatelnterfaceFor: aChildClass to ChildInterface (see below) where aChildClass
is related to aClass via the relationship relName (the resulting <aChildClass>
Interface is held in Detaillnterface).

ParentInterface has two additional instance methods. children opens the display
window for the Child instances related to the selected Parent instance (e.g., used
when the Lineltem button is selected (Figure 4)). delete overrides EntityInterface
delete method. It checks deletion constraints for the selected parent instance and
cascade deletes children instances.

Entrytinterface is a subclass of Parentinterface and has one additional instance
method, add which overrides Entitylnterface add method as necessary for the Full
Intersection pattern.

3. DependentInterface

Dependentinterface is a subclass of Entitylnterface and the superclass of
ChildInterface and IntersectionInterface. It has one class method open: anlnstance
which creates an instance of itself, assigns anInstance, the Parent or Entry class
instance, to its instance variable, oneSide, and opens its update window.
ChildInterface has one class-instance variable, ParentRelationship corresponding
to ChildRelationship in the Parent class.

Intersectioninterface has two class-instance variables, EntryRelationshipl and
EntryRelationship2, each holding one of the Entry relationships of a Full
Intersection pattern. It has one class method, CreatelnterfaceFor: aClass
entryRelationship: relNamel and: relName2 which creates a subclass of itself
named <aClass>Interface where aClass is the Inter- section class. It sends a
CreatelnterfaceFor: message to Entrylnterface for each of the Entry classes
related to aClass via relNamel and relName2.

56 Seoul Journal of Business

V . Illustration

Update interfaces are generated by identifying patterns in the object model and
sending messages to the appropriate meta-classes. This section illustrates how
update interfaces for the object model of Figure 1 are generated. The database
definition is shown in Appendix 1. The Interface classes are illustrated in Figure 8.

The interface for Department, an Unconstrained Independent (Referent) pattern,
is generated using:
Entityinterface CreatelnterfaceFor. Department.

Entitylnterface generates a subclass of itself named Departmentlnterface which
is capable of managing the interface windows illustrated in Figure 2. It uses
methods inherited from Entitylnterface to do so. It opens the Department display
window when sent the message open (inherited from ApplicationModel). It opens
the Department update widow, specified in DepartmentSpec, when the add or
edit buttons are selected (using the add or edit methods inherited from

EntityInterface).

The interface for Customer, a Constrained Independent (Referential) pattern is
generated using:
Entityinterface CreatelnterfaceFor: Customer.

Entitylnterface generates Customerinterface. Its class method CustomerSpec
defines the Customer update window. It includes a combo box for each many to
one relationship as shown in Figure 3. Since the minimum cardinality of those
relationships is 1, the choices in the combo box are restricted to the identifier
values of the related class.

The interfaces for Order-Lineltem and Payment-OrderPayment, Parent-Child
patterns, are generated using:
Parentinterface CreatelnterfaceFor: Order childRelationship: *Contain’.
Parentinterface Createlnterfacefor. Payment childRelationship: “Apply”.

FarentInterface generates interface classes for Parents (OrderInterface and
PaymentInterface) as subclasses of itself and requests ChildInterface to generate
interface classes for Children (LineltemInterface, and OrderPaymentinterface). The

57

Patterns, Interfaces, and Update Semantics

-
-

Object— Oriented Development.

h sadgainpnigasd

sadgluatwhediapiO

sadgwa)jaury

sadgjonpold

sadgyawio)sn)

BOBJIBIU[81NN S 85

poejiejujjusiuiediepiQ

RGN ETER N

edgjiajuijonpold| poejaiujadAi |

Jewiosny

2adguawied

9adgi8piQ

aoepejufjuswiey

aoe[iau|iepiQ

sadguosiagsajes
sadgaaltoidwipaveles

2adgIaunisng

aoepeu)ealolduwiy

adEjiajujalIoIsny

sadguauniedsq

Figure 8. Interface Class Hierarchy

58 Seoul Journal of Business

display windows for Order and Lineltem are illustrated in Figure 4.

The interfaces for CustomerType-PriceStructure-Product, a Full Intersection
pattern are generated using:

Intersectioninterface CreatelnterfaceFor: PriceStructure entryRelationship:

‘CustormerTypePricing” and: ‘ProductPricing’.

Intersectioninterface generates PriceStructurelnterface as a subclass of itself and
requests Entryinterface to generate CustomerTypelnterface and Productinterface.
The display windows for CustomerType and PriceStructure are illustrated in
Figure 5.

Employee and its subclasses form a Partitioned Subclass pattern --
SalariedEmployee and SalesPerson partition Employee. This requirement is
defined in the database definition (Appendix 1) by sending the message,

Employee Partition: true.

Having specified constraint for Employee, its update interface is generated
using:

Entityinterface CreatelnterfaceFor. Employee.

EntityInterface generates Employeelnterface which contains the update window
definitions for both SalariedEmployee and SalesPerson. Its display window has an
additional column for the class (Figure 6.a). When an employee is added, its
class must be selected from the display list (Figure 6.b). Then the update window
for the selected class is open (Figure 6.c).

OrderPayment has a Cyclic Constraint specified as:

OrderPaymentinterface CyclicConstraintFor: “Credit’ relationshipPath: *Apply
Pay Place’.

OrderPaymentinterface inherits this method from Entitylnterface (through
DependentInterface and ChildInerface). The list of values displayed in the combo
box for Credit in the update window specified in OrderPaymentSpec (a generated
class method of OrderPaymentlnerface) is restricted to orders placed by the
customer who made the related payment.

VI. Summary and Future Research

We describe six recurring patterns in conceptual object models each having

Object— Oriented Development: Patterns, Interfaces, and Update Semantics 59

similar update semantics and requiring similar update interfaces. These are:
Unconstrained Independent, Constrained Independent, Parent-Child, Full
Intersection, Subtype, and Cyclic Constraint. We develop a framework, i.e., a set
of meta-classes, for implementing these patterns within a Semantic Object
Oriented Data Access System (SOODAS). Once a developer recognizes a pattern,
display and update windows can be easily configured by sending messages to the
appropriate meta-class.

Future research will progress in several directions. First, additional patterns will
be identified through the application of our current patterns in the development
of real object systems. Although our patterns are widely applicable and general,
we anticipate that there are other useful patterns that should be identified and
supported by our framework. Second, the current framework will be refined to
include additional interface options such as multiple instance update windows,
for example, a single update window in which a Parent (or Entry) instance and
all of its related Child (Intersection) instances can be maintained. Third, our
patterns must be evaluated empirically. One of the claimed advantages of Object
Orientation is development efficiency and code re-usability. A key concern, and
one for empirical research, is the impact of our patterns on system development
effort and maintainability. Preliminary evidence is currently being gathered by
using the patterns as the implementation environment for teaching OO
development. Finally, our patterns can be applied to OOPL's other than
Smalltalk. Currently, a framework that supports the patterns is being developed
in JAVA.

60 Seoul Journal of Business

References

Alexander, C., The Timeless Way of Building, Oxford University Press, New York,
1979. _

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., and
Angel, S., A Pattern Language: Towns, Buildings, Construction, Oxford
University Press, New York, 1977.

Budinsky, F. J., Finnie, M. A., Vlissides, J. M., and Yu, P. S., “Automatic Code
Generation from Design Patterns,” IBM Systems Jouwnal, Vol. 35, No. 2,
1996.

Coad, P., “Object-Oriented Patterns,” Communications of the ACM, Vol. 35, No. 9,
September 1992, pp. 152-159.

Coad, P., North, D., and Mayfield, M., Object Models: Strategies, Patterns, and
Applications, Yourdon Press, Englewood Cliffs, NJ, 1995.

Curtis, B., “Cognitive Issues in Reusing Software Artifacts,” in Biggerstaff, T. J.
and Perlis, A. J. (eds), Software Reusability, Volume II, Addison-Wesley,
1989, pp. 269-287.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., “Design Patterns:
Abstraction and Reuse of Object-Oriented Design,” Proceedings of ECOOP
'93 Conference, 1993.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley Publishing Co.,
Reading, MA, 1995. |

Goldberg, A. and Robson, D., Smalltalk-80, Addison-Wesley, Reading, MA, 1989.

Isakowitz, T. and Kauffman, R. J., “Supporting Search for Reusable Software
Objects,” IEEE Transactions on Software Engineering, Vol. 22, No. 6, June
1996, pp. 407-423.

Johnson, R., “Documenting Frameworks Using Patterns,” Proceedings of OOPSLA
'92, Vancouver, Canada, October 1992, pp. 63-76.

Kim, W., Baneree, J., Chou, H.-T., “Composite Object Support in an
Object-Oriented Database System,” Proceedings of OOPSLA 87, October
4-8, 1987, pp.118-125.

March, S. T. and Rho, S., “Object Support for Entity Relationship Semantics,”
Proceedings of Workshop on Information Technologies and Systems,
December 1996, pp. 1-10.

March, S. T. and Rho, S., “SOODAS: A Semantic Object-Oriented Data Access
System,” under journal review.

Object— Oriented Development: Patterns, Interfaces, and Update Semantics 61

Pree, W., Design Patterns for Object-Oriented Software Development, Addison-
Wesley, Publishing Company, Wokingham, England, 1995.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorenson, W,
Object-Oriented Modeling and Design, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1991.

Schmidt, D. C., “Using Design Patterns to Develop Reusable Object-Oriented
Communication Software,” Communications of the ACM, Vol. 38, No. 10,
October 1995, pp. 65-74.

Schmidt, D., Fayad, M., and Johnson, R., “Software Patterns,” Communications of
the ACM, Vol. 39, No. 10, October 1996, pp. 36-40.

VisualWorks, User’s Guide, ParcPlace Systems, Inc., 1994.

62 Seoul Journal of Business

Appendix . SOODAS Script to Implement the Object Model of Figure 1.

“Define the entities.”

EntityObject ~ CreateEntity: #CustomerType attributes: ‘customerType description’ under:
‘OrderEntry’.

EntityObject CreateEntity: #Customer attributes: ‘customerNo name address’ under: ‘OrderEntry’.

EntityObject CreateEntity: #Order attributes: ‘orderNo date’ under: ‘OrderEntry’.

EntityObject CreateEntity: #Lineltem attributes: ‘lineNo quantity price’ under: ‘OrderEntry’.

EntityObject CreateEntity: #Product attributes: ‘productNo description price qoh' under:
‘OrderEntry’.

EntityObject CreateEntity: #PriceStructure attributes: ‘discountRate’ under: ‘OrderEntry’.

EntityObject CreateEntity: #Department attributes: ‘deptNo deptName’ under: ‘OrderEntry’.

EntityObject CreateEntity: #Employee attributes: ‘empNo empName' under: ‘OrderEntry’.

EntityObject CreateEntity: #Payment attributes: ‘checkNo dateReceived amount' under:
‘OrderEntry’.

EntityObject CreateEntity: #OrderPayment attributes: ‘lineNo amount’ under: ‘OrderEntry’.

“ Define the subtypes. ~

Employee CreateSubtype: #SalariedEmployee attributes: ‘salary’.
Employee CreateSubtype: #SalesPerson attributes: ‘commisionRate’.
Employee Partition: true.

“ Define the relationships. "

Relationship new: CustomerType and: PriceStructure withMin: 1 andMin: 0 withMax: 1 andMax:
Many named: ‘CustomerTypePricing accessBy: ‘PricesForCustomerType’ inverselyBy: ‘Customer-
TypeForPrice'.

Relationship new: Product and: PriceStructure withMin: 1 andMin: 0 withMax: 1 andMax: Many
named: ‘ProductPricing’ accessBy: ‘PricesForProduct’ inverselyBy: ‘ProductForPrice’.

Relationship new: CustomerType and: Customer withMin: 1 andMin: 0 withMax: 1 andMax:
Many named: ‘CustomerType’ accessBy: ‘CustomersOfType’ inverselyBy: ‘TypeOfCustmer'.

Relationship new: Product and: Lineltem withMin: 1 andMin: 0 withMax: 1 andMax: Many
named: ‘SellProduct’ accessBy: LineltemsOfProduct’ inverselyBy: ‘ProductOfLineltem’.

Relationship new: Customer and: Order withMin: 1 andMin: O withMax: 1 andMax: Many
named: ‘Place’ accessBy: ‘Places’ inverselyBy: ‘PlacedBy'.

Relationship new: Order and: Lineltem withMin: 1 andMin: 0 withMax: 1 andMax: Many named:
‘Contain’ accessBy: ‘Contains’ inverselyBy: ‘ContainedIn’.

Relationship new: Department and: Employee withMin: 1 andMin: O withMax: 1 andMax: Many

Object— Oriented Development: Patterns, Interfaces, and Update Semantics 63

named: ‘Report’ accessBy: ‘Employs’ inverselyBy: ‘ReportsTo'.

Relationship new: SalesPerson and: Order withMin: 1 andMin: 0 withMax: 1 andMax: Many
named: ‘Obtain’ accessBy: ‘Obtains’ inverselyBy: ‘ObtainedBy’.

Relationship new: SalesPerson and: Customer withMin: 1 andMin: O withMax: 1 andMax: Many
named: ‘Service’ accessBy: ‘Services’ inverselyBy: ‘ServicedBy'.

Relationship new: Customer and: Payment withMin: 1 andMin: 0 withMax: 1 andMax: Many
named: ‘Pay’ accessBy: ‘Pays’ inverselyBy: ‘PaidBy’.

Relationship new: Payment and: OrderPayment withMin: 1 andMin: O withMax: 1 andMax:
Many named: ‘Apply’ accessBy: ‘AppliedTo’ inverselyBy: ‘AppliedFrom’.

Relationship new: Order and: OrderPayment withMin: 1 andMin: 0 withMax: 1 andMax: Many
named: 'Credit' accessBy: ‘CreditedBy’ inverselyBy: ‘Credits’.

“ Define the external identifiers. "
CustomerType Identifier: ‘customerType'.
Product Identifier: ‘productNo'.

PriceStructure Identifier: ‘CustomerTypeForPrice ProductForPrice’.
Customer Identifier: ‘customerNo'.

Order Identifier: ‘orderNo'.

Lineltem Identifier: ‘Containedin lineNo'.
Department Identifier: ‘deptNo’.

Employee Identifier: ‘empNo’.

Payment Identifier: ‘PaidBy checkNo'.
OrderPayment Identifier: ‘AppliedFrom lineNo’.

