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ABSTRACT

Most data-driven decision support tools do not include input from people. 
We study whether and how to incorporate physician input into such tools, 
in an empirical setting of predicting the surgery duration. Using data from 
a hospital, we evaluate and compare the performances of three families of 
models: models with physician forecasts, purely data-based models, and 
models that combine physician forecasts and data. We find that combined 
models perform the best, which suggests that physician forecasts have 
valuable information above and beyond what is captured by data. We 
also find that applying simple corrections to physician forecasts performs 
comparably well.
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INTRODUCTION

Using data-driven decision support tools to make operational 
decisions is becoming increasingly viable for hospitals due to 
the growing availability of electronic medical record data and 
hospital operational data (Macario 2010). Most data-driven tools 
do not ask people (e.g., clinicians) for their input (Berner 2009). 
People may often be inconsistent and biased, and hence by not 
incorporating people’s input, one can ensure that data-driven tools 
make consistent and objective decisions. However, people may 
also observe important information that may remain unobserved 
in the collected data (Eijkemans et al. 2010). Furthermore, while 
the idea of data-driven practices is gaining support in healthcare, 
studies have shown that getting people to actually practice it is 
difficult (Bates et al. 2003), because of people’s lack of confidence 
in the tools used, and the perception that these tools would reduce 
the decision-makers’ autonomy (Cabana et al. 1999). People may 
become less resistant to adopting data-driven tools if their input can 
be effectively incorporated into those tools (Zhou et al. 2016).

In this study, we explore whether and how to incorporate the 
discretion/expertise/intuition of physicians (hereafter referred to 
as ‘physician input’) into data-driven decision support tools for 
improved operational decision-making in hospitals. We empirically 
investigate this question by using the surgery duration prediction 
data. Specifically, we address two research questions. First, does 
physician input offer predictive power beyond that of purely data-
based models in predicting the surgery duration? If so, how can 
we make good use of it? Second, how much does the answer to the 
first question depend on the surgery characteristics (e.g., surgical 
specialty, surgeon, and task)? If the degree of heterogeneity is high, 
what can we do to improve the overall predictive accuracy? 

Our choice of surgery duration prediction as the empirical setting 
is motivated by three reasons. First, the surgery duration prediction 
is a real and important problem. Accurately predicting the surgery 
case duration is directly linked to the efficient use of operating 
rooms that serve as the hospitals’ most profitable as well as most 
expensive facilities (Cardoen, Demeulemeester, and Belien 2010). 
In fact, this research was motivated by a discussion with a hospital 
manager who wanted to replace the surgeons’ predictions of surgery 
duration by those of purely data-based models, in the hope of 
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improving the hospital’s use of operating rooms. When allocating 
operating room times to surgery cases, hospitals need to know 
how long the surgeries will take. Although the surgery duration 
prediction problem has been extensively studied, it still remains a 
challenge (Macario 2010; Zhou et al. 2016). Inaccurate predictions 
have a trickle-down effect on daily hospital operations, including 
wasting patients’ and staffs’ time and expensive operating room 
time.

Second, the surgery duration prediction problem offers a clean 
and objective way of measuring the performance of different 
approaches, including that of physician input. Unlike in many 
healthcare problems, where the outcome (e.g., quality of care) can 
be measured in multiple, and often, subjective ways (McGlynn 
1997), the surgery duration prediction problem has a clean outcome 
measure—the actual surgery duration— to which the predicted 
values from the various methods can be compared.

Third, “there is at present no conclusive view on whether it is 
necessary to include the surgeons’ subjective knowledge” to predict 
the surgery duration (Larsson 2013). Studies have shown that 
expert knowledge may be useful when the problem has structure, 
the performance can be evaluated via high-quality rapid feedback, 
and the expert has experienced many repetitions (Kahneman and 
Klein 2009). The surgeons’ prediction of surgery duration meets 
all of these three conditions. As such, there is potential that the 
insights gleaned from this research can be used to transform the 
way in which hospitals predict surgery duration which, in turn, can 
save expensive operating room times and reduce delays in patient 
care.

Models of Surgery Duration

In this paper, we consider three families of models for surgery 
duration: (i) models with physician input, which rely on the 
physician input, either directly, after a correction, or by using 
a physician coefficients model; (ii) purely data-based models, 
which ignore the physician input altogether and rely on historical 
data only; and (iii) combined models, which incorporate both the 
physician input and purely data-based models. By considering 
a wide range of potential models and testing them with data, we 
provide a comprehensive and rigorous treatment of the surgery 
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duration prediction problem, which we believe is lacking in the 
literature.

Models with Physician Input. It is natural to begin our investigation 
by examining the predictive accuracy of physician input. Although 
physician input can be inconsistent and biased, it may also have 
an advantage over purely data-based models, as people are more 
flexible than purely data-based models in adapting to changing 
conditions and abnormal cases, and they are also able to evaluate 
variables that are difficult to measure objectively. In addition, as 
mentioned above, effectively incorporating physician input may help 
lower the barriers of physician adherence to data-driven decision 
support tools.

We consider three different physician input models: (a) a 
benchmark model where the surgeon’s prediction of surgery case 
duration is used directly as the prediction for surgery duration; (b) 
a corrected model, which systematically removes the bias in the 
surgeon’s prediction (Theil 1966); and (c) a physician coefficients 
model, which mimics the management coefficient model (Bowman 
1963), where the relationship between the surgeon’s prediction and 
the observed predictor variables are modeled via linear regression. 
Note that this family of models requires the elicitation of physician 
input (i.e., the surgeon’s prediction of surgery duration) in order to 
be implemented in practice.

Purely Data-based Models. Our second family of models are 
purely data-based models, which do not need physician input and 
utilize historical data only. Purely data-based models have distinct 
advantages compared to models with physician input: They operate 
on observed information in a consistent and mechanical manner, 
and they optimally weigh the evidence. However, one loses the 
potential benefit of the information provided in physician input. In 
addition, purely data-based models can perform poorly when there 
is limited historical data, a known problem in predicting the surgery 
duration (Macario 2006), which we have also encountered in this 
paper. We consider two models: (a) a historical average model, which 
simply averages past surgery durations to predict the future surgery 
duration; and (b) a regression model, which models the relationship 
between the surgery duration and observed predictor variables via 
linear regression.
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Combined Models. Our third family of models combines the 
physician input and purely data-based models. Studies have 
shown that combining forecasts in an effective manner generally 
leads to superior predictions compared to any one of the individual 
inputs (Timmermann 2006). Combined models leverage both 
the discretion/expertise/intuition in physician input and the 
consistency and unbiasedness of purely data-based models. In this 
paper, we first compute statistics that can help determine whether 
combined models can be useful. We then consider three models: 
(a) a simple regression combination model, which optimally weighs 
physician input and the output from the purely data-based model 
above; (b) a full regression combination model, which models the 
relationship between surgery duration and the observed predictor 
variables, including the surgeon’s prediction, via linear regression; 
and (c) a heuristic model, which weighs the physician input and 
the output from the purely data-based model equally (Blattberg and 
Hoch 1990).

A Tailored Approach. In this study, we evaluate and compare the 
performance of various models for different groupings of the data. 
We do so because we observe considerable heterogeneity in the 
value of physician input when different groupings are used. The 
groupings that we consider are (a) surgical specialty, (b) surgeon, 
(c) procedure type, and (d) surgeon-procedure pair. We demonstrate 
that the predictive accuracy of the various models that we consider 
varies substantially depending on the grouping considered. By 
evaluating the performance for different groupings of the data, we 
take a tailored approach to the problem rather than a one-size-
fits-all approach, and show that our tailored approach can lead to 
significant performance improvements for some of the models that 
we consider.

Main Contributions

We summarize our main contributions as follows:

•   We propose a host of models to predict surgery duration and 
empirically compare their performances.

•   The heterogeneity in the performance of surgeon’s prediction 
across surgeons and across procedures has been pointed out 
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in the literature (Eijkemans et al. 2010). However, to the best 
of our knowledge, we are the first to empirically demonstrate 
the improvement in predictive accuracy resulting from different 
groupings of the data.

•   Building on a theoretical framework developed in the expert 
judgment literature (Mincer and Zarnowitz 1969; Blattberg and 
Hoch 1990), we demonstrate how one can quantify the value 
of the surgeon’s prediction. We then present several ways to 
leverage the surgeon’s prediction. This stands in contrast to 
earlier papers where typically only a regression model combining 
the surgeon estimate and other predictor variables (similar to 
one of our combined models) was used.

•   We find that physician input offers predictive power beyond 
that of purely data-based models in our empirical setting. 
The best performing model in our setting is the full regression 
combination model, under the condition that a single regression 
model is fitted to all surgeries. However, we find that the 
corrected physician input model performs comparably well when 
a correction model is fitted to each surgeon- procedure pair. The 
increase in the mean squared error, in this case, is only 5%. 
On the other hand, if the physician input is not used, the mean 
squared error of the best performing model increases by 17%.

LITERATURE REVIEW

We first discuss research that seeks to understand the effect 
of allowing expert input. Subsequently, we discuss papers that 
consider combining expert input and analytics-based models as 
well as relevant papers in operating room management and surgical 
scheduling.

Understanding the Benefits/Costs of Allowing Expert Input

There is a long line of research that examines the value of expert 
input in the judgment and decision-making literature. Some studies 
suggest that expert judgment has little predictive power beyond 
that of purely data-based models (Dawes, Faust, and Meehl 1989), 
whereas other studies suggest expert judgment can outperform 
purely data-based models (Bunn and Wright 1991). There are 
also studies that show systematized expert input—constructed 
by regressing expert input on observed covariates, also known as 
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the management coefficients model or the judgment bootstrapping 
model—can outperform expert input (Bowman 1963).

In the Operations Management literature, understanding the 
benefits/costs of allowing expert input in operational decision-
making has been attracting interest in various application areas 
such as horizontal multimarket coordination (Anand and Mendelson 
1997), ordering behavior in retail stores (Van Donselaar et al. 
2010), and price setting (Phillips, Simsek, and van Ryzin 2015). In 
healthcare settings, Kim et al. (2015) examine physicians’ hospital 
unit admission decisions and show that allowing physician input 
in their data-driven decision making can help improve the system’s 
performance. On the other hand, Ibanez et al. (2018) show that 
when radiologists are allowed to deviate from their prescribed 
sequence, they deviate in a way that does not necessarily improve 
system performance. We contribute to this line of research by 
studying the effect of physician input on the use of operating rooms, 
and by showing how the physician input can be best leveraged to 
improve system performance.

Combining Expert Input with Analytics-based Models

Combining multiple forecasts to improve forecasting accuracy has 
been a popular topic in the statistics and management literature 
(Timmermann 2006). In general, the existing literature advocates 
combining forecasts if 1) the information sets for each forecast are 
not known, 2) the non-overlapping parts of information sets are 
important (e.g., low correlation in special cases), and 3) the forecasts 
are based on different loss functions (Timmermann 2006).

This study is most related to a specific category of forecast 
combinations where the experts’ forecasts are combined with the 
forecasts from purely data-based models. Several papers have 
examined combining expert input with analytics-based models 
for the surgery duration prediction problem. Most of these papers 
combine the surgeons’ prediction and analytics-based models by 
including the surgeons’ prediction as a feature in their analytics-
based models for predicting the surgery duration (Wright et al. 1996; 
Eijkemans et al. 2010; Stepaniak et al. 2009). They report that the 
surgeons’ prediction is an important predictor of surgery duration. 
Zhou et al. (2016) is in the same spirit as this paper: It explores 
whether and how to involve surgeons in the prediction exercise. 
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In particular, the authors propose a method to detect whether a 
surgeon’s prediction will overestimate or underestimate the surgery 
duration, which helps in deciding whether the surgeon’s prediction 
should be used or not. We contribute to this stream of literature by 
proposing and empirically comparing the performances of a host of 
models that can be used to combine surgeon prediction with data.

Operating Room Management and Surgical Scheduling

Hospitals employ various methods to predict the surgery duration. 
Many hospitals rely on surgeons to provide forecasts (Macario 2010; 
Zhou et al. 2016), while others use the moving average of 5 to 10 
previous cases of a similar nature (Ozen et al. 2016) or regression-
based models based on the patient’s and procedure’s characteristics 
(Eijkemans et al. 2010). Some hospitals combine different methods, 
but in an unsystematic fashion in which the different methods are 
not optimally weighed in (Hosseini et al. 2015).

Studies have examined the accuracy of the surgeon’s prediction. 
Laskin, Abubaker, and Strauss (2013) report that overestimating the 
surgery duration is more common than underestimating it. Travis 
et al. (2014) find heterogeneity in the degree of bias in the prediction 
and show that the sign and magnitude of the bias depends on 
the  surgeon and the procedure. Larsson (2013) reports that while 
historical averages are more accurate than the surgeon’s prediction 
in general, surgeons are better at identifying long cases. 

Predicting surgery duration using purely data-based models has 
also been extensively studied (Strum et al. 2000; Eijkemans et al. 
2010). When purely data-based models are used to predict the 
surgery duration, a major cause of inaccuracy has been found to 
be the lack of historical data. Macario (2006) reports that 50% of 
the surgery cases that need surgery duration prediction have less 
than five previous cases of the same procedure type and the same 
surgeon during the preceding year. Zhou and Dexter (1998) report 
that only 32% of their cases had two or more previous occurrences 
of the same procedure with the same surgeon. In this paper, we 
focus on surgery cases that have at least 20 previous cases of the 
same procedure and the same surgeon in the training sample to 
evaluate our proposed models. We show that even after restricting 
our sample in this way, the lack of historical data can be a major 
cause of inaccuracy for some of the models that we propose; in such 
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case, we show that models with physician input can be used.

EMPIRICAL SETTING

To address our research questions, we use the operating room 
scheduling and usage data from an academic hospital in a large 
metropolitan area of the United States. In what follows, we describe 
the relevant operating process at the hospital, the data, and the 
variables of interest.

Surgery Scheduling Process

When a physician deems that a surgery is needed, the physician 
works with a surgical scheduler within the clinical department to 
schedule a surgery. The departmental surgical scheduler submits 
an electronic surgery booking slip, in which the details of the 
surgery, including the surgeon’s prediction of the surgery duration, 
the proposed date and time of the surgery, procedure name(s), 
patient information, and required pre-operative procedures, have 
to be entered. The hospital’s surgical schedulers then schedule the 
surgery.

Data

We merge the electronic booking slips data, the patient information 
data, and the surgery information data of all the patients who had 
surgery from January 1, 2014 to December 31, 2016 at the study 
hospital to generate the dataset for this study. During our three-year 
study period, 24,037 surgery cases were performed in the 24 main 
operating rooms at the hospital. We removed all cases performed 
by cardiothoracic surgeons (2,492 cases) because 99.9% of their 
cases did not have the electronic booking slip data. We removed 
5,733 additional cases with missing electronic booking slip data; 
the primary reason for missing electronic booking slip data was the 
urgent nature of the cases. We removed 9 surgeries with missing 
surgeon or procedure and 162 surgeries that lasted less than 15 
minutes or longer than 720 minutes.

In this study, we consider various models for predicting the 
surgery duration, and we empirically compare their performances. 
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To provide an unbiased evaluation of model fits, we split our 
remaining data of the 15,641 surgery cases into two sets: the 
training set including 10,470 cases performed in 2014 and 2015, 
and the test set including 5,171 cases performed in 2016. In the 
following sections, we consider estimating separate models for 
different groups of the surgery cases. The smallest-sized groups are 
formed when we group surgery cases at the surgeon-procedure pair 
level. To ensure that we have enough samples to fit the parameters 
in the test set and that we have enough samples to have confidence 
in the performance evaluation in the training set, we remove 
surgeries that belong to the surgeon-procedure pairs with fewer 
than 20 (10) surgeries in the training (test) set. The resulting data 
consist of 6,705 surgery cases, 4,341 cases in the training set and 
2,364 cases in the test set.

Variables

Surgery duration. We define surgery duration as the time from 
incision to closure. The average surgery duration was 217.3 minutes 
(SD 114.1) in the training set and 216.3 minutes (SD 112.0) in the 
test set (the summary statistics are also provided in table 1).

We next examine the average and the variability of the surgery 
duration across different groups: (a) by surgeon specialty, (b) by 
surgeon, (c) by procedure, and (d) by surgeon-procedure pair. Figure 
1 shows the average surgery duration with its 95% confidence 
interval for each group in each of the four groupings; it shows that 
the average and the variability of  surgery duration vary widely 
across different groups in each of the groupings.

We note that within each surgeon-procedure pair, the normal 
distribution provides a good fit for the surgery duration distribution. 
The Shapiro-Francia test, a statistical test for normality, fails to 
reject the null hypothesis that the surgery duration is normally 
distributed for 50 pairs (out of 81 pairs) at the 95% confidence level. 
Hence, we do not apply any data transformation to the surgery 
duration when we model it using linear regression models.

Surgeon’s prediction of surgery duration. The average surgeon’s 
prediction of surgery duration was 212.9 minutes (SD 100.8) in 
the training set and 215.3 minutes (SD 92.3) in the test set. If we 
compare only the averages and standard deviations, the surgeons’ 
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predictions do not seem to differ much from the actual surgery 
durations.

However, figure 2(a), a scatter plot of surgeon’s prediction versus 
surgery duration for the test set along with a 45-degree line, tells 
a different story. We observe the presence of significant under-
prediction (above the 45-degree line) as well as over-prediction 
(below the 45-degree line). About 29% (18%) of the surgeries ran 
over the surgeon’s predicted time by more than 30 (60) minutes, and 
about 32% (19%) of the surgeries took shorter than the surgeon’s 
predicted time by more than 30 (60) minutes. Figure 2(b) shows 
that the degrees of under-prediction and over-prediction vary widely 
across surgeon-procedure pairs, implying that there may be value in 

Table 1. Summary Statistics.

Variable
Training set 
(n=4,341)

Test set 
(n=2,364)

Surgery duration (minutes)
Surgeon estimate (minutes)

217.3 (114.1)
212.9 (100.8)

216.3 (112.0)
215.3 (92.3)

# Unique specialty
# Unique surgeon
# Unique procedure
# Unique surgeon-procedure pair

12
42
49
81

12
42
49
81

Age
Female
Race
 Asian
 Black
 White
 Other
ASA Level
 0-1
 2
 3
 4-6
Indicator for major anesthesia
Indicator for more than one surgeon 
Indicator for more than one procedure

61.5 (13.5)
42%
7%
5%
72%
16%
3%
44%
51%
3%
95%
7%
8%

61.7 (13.5)
42%
7%
5%
72%
16%
2%
42%
52%
3%
95%
7%
7%

Notes:   We report averages (standard deviation in parentheses) for continuous 
variables and percentages for binary or categorical variables. ASA Level 
is a six-level assessment of the fitness of the patient before surgery 
measured by the American Society of Anesthesiologists physical status 
classification system (American Society of Anesthesiologists 2014).
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evaluating the surgeons’ predictions by different groups.

Observed predictors of surgery duration. Studies have identified 
various factors that affect surgery duration (e.g., see Strum et al. 
(2000) and Hosseini et al. (2015)). We follow the literature and 
include all the variables we have in our data as predictors in our 
surgery duration prediction models. Table 1 provides their summary 
statistics.  

QUANTIFYING THE VALUE OF PHYSICIAN INPUT

In this section, we address our first research question. Namely, we 
investigate whether there is valuable information left in physician 
input above and beyond what can be captured by a purely data-

(a) By surgeon specialty

(c) By procedure

(b) By surgeon

(d) By surgeon-procedure pair

Figure 1. Average surgery duration and its 95% confidence interval by 
different groupings.
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based model.

Isolating the Physician’s Residual Expertise

We first isolate the physician’s residual expertise (see Blattberg 
and Hoch (1990) and references therein for related works). Let Y 
be the surgery duration, P be the surgeon’s prediction of Y, and X 
be a vector of the observed predictor variables available to both the 

(a) Scatter plot of surgeon’s prediction versus surgery duration.

(b)   Scatter plot of % under-prediction versus % over-prediction. Each dot is a 
surgeon- procedure pair.

Figure 2. Comparing the surgeon’s prediction and surgery duration.
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surgeon and purely data-based models of surgery duration. Y given 
X can be estimated using the ordinary least squares (OLS) model:

Y = β1 + β2X + ϵ. (1)

The residual, ϵ, captures the part of the surgery duration that is 
unexplained by the purely data-based model given in (1). Note that  
M̂ = β̂1 + β̂2X represents the information extractable from the observed 
predictor variables. Then, the physician’s residual expertise, above 
and beyond what is captured by the purely data-based model in (1), 
can be isolated by regressing the surgeon’s prediction (P) onto the 
purely data-based model’s prediction, M̂  , as follows: 

P = γ1 + γ2M̂   + U. (2)

We define U as the physician’s residual expertise (Blattberg and 
Hoch 1990). That is, U contains the unique part of the physician’s 
input which is composed of both valid intuition and random error. 
The valid intuition could result from the physician’s ability to pick 
up omitted variables or nonlinearities and interactions that are not 
included in the purely data-based model. We also introduce the 
following additional equations: 

Y = θ1 + θ2P + ν. (3)

M̂   = τ1 + τ2P + ω. (4)

Similar to ϵ capturing the part of the surgery duration that is 
unexplained by the purely data-based model in (1), ν captures the 
part of the surgery duration that is unexplained by the surgeon 
prediction. Correspondingly, ω contains the part of the prediction of 
the purely data-based model that is unexplained by the surgeon’s 
prediction.

Three Statistics

Next, we compute three statistics to understand the value of the 
physician’s residual expertise (e.g., see Mincer and Zarnowitz (1969) 
and Blattberg and Hoch (1990)). The following statistics will show: 1) 
whether we can use the physician’s residual expertise, U, to improve 
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the surgery duration predictions; and 2) the relative predictive 
powers of the surgeon’s prediction and purely data-based model, 
compared to each other.

•   rY,U is the correlation coefficient between the surgery duration, 
Y, and the physician’s residual expertise, U. That is, it is the 
semipartial correlation between the surgery duration, Y, and the 
surgeon’s prediction, P, after partialling the purely data-based 
model M̂   out of P. Blattberg and Hoch (1990) call this statistic 
the validity of expert intuition. Whenever rY,U ≠ 0, combining the 
surgeon’s prediction with the purely data-based model output 
will be more accurate than either of the single inputs. (We note 
that this may not hold true when evaluating performance in the 
test set.)

•   r2
ϵ,U is the square of the correlation coefficient between the 

residual of the purely data-based model in (1), ϵ, and the 
physician’s residual expertise, U. That is, it is the percent of 
surgery duration variance unexplained by the purely data-
based model that can be explained by the surgeon’s prediction. 
Having r2

ϵ,U > 0 means that the surgeon’s prediction, P, contains 
predictive power based not only on the observed factors, but also 
on surgeon expertise. 

•   r2
ν,ω is the square of the correlation coefficient between the part 

of the surgery duration that is unexplained by the surgeon’s 
prediction (ν in (3)) and the part of the prediction of the purely 
data-based model that is unexplained by the physician input 
(ω in (4)). That is, it is the percent of surgery duration variance 
unexplained by the surgeon’s prediction and that can be 
explained by the purely data-based model. Having r2

ν,ω > 0  
means that the observed predictors contain a predictive power 
that was not used in the surgeon’s prediction.

Results

For the vector of observed predictor variables, X, we include all of 
the observed predictor variables described in the Empirical Setting 
section and 81 dummy variables for each surgeon-procedure pair. 
As described in the Empirical Setting section, we use the training 
set to fit the parameters of the models in (1)-(4). We then use the 
estimated parameters to compute rY,U, r

2
ϵ,U, and r2

ν,ω in the test set.
The values of the three statistics for the 2,364 surgery cases 
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in the test set are reported in column (1) of table 2. The validity 
of physician intuition rY,U is .21, which shows that there is a 
substantial degree of physician intuition. As discussed above, 
because rY,U ≠ 0, combining the surgeon’s prediction with the purely 
data-based model output will be more accurate than either of the 
individual inputs. We find that r2

ϵ,U is .12, meaning that surgeons’ 
predictions explain 12% of the variance in the surgery duration not 
captured by the purely data-based model. Lastly, we find that r2

ν,ω is 
.26, i.e., the purely data-based model explains 26% of the variance 
in the surgery duration not captured by the surgeons’ predictions.

The analyses in in the Empirical Setting section show that the 
average of surgery duration, the coefficient of variation of surgery 
duration, and the performance of the surgeon’s prediction vary 
widely across different groups (e.g., groups by specialty, by surgeon, 
by procedure, and by surgeon-procedure). Motivated by this, we 
compute the three statistics for each group determined by specialty, 
by surgeon, by procedure, and by surgeon-procedure. Columns (2)-
(5) of table 2 show the average, standard deviation, minimum value, 
and the maximum value of these statistics, by each grouping. They 
show substantial differences across the different groups, which 
suggests that the relative performance of the surgeon’s prediction, 
the purely data-based model, and the combination of the two, will 
vary when we consider different groupings. 

Table 2. Quantifying the value of the surgeons’ prediction by different 
groupings.

Measure
(1)

One 
group

(2)
By specialty

(3)
By surgeon

(4)
By procedure

(5)
By surgeon-
procedure

No. of 
groups

1 12 42 49 81

rY,U .21 .31 (.25, -.21, 
.73)

.34 (.30, -.44, 
.92)

.29 (.29, -.38, 
.92)

.31 (.31, -.60, 
.92)

r2
ϵ,U .12 .20 (.13, .04, 

.40)
.25 (.19, .00, 

.85)
.23 (.20, .00, 

.85)
.24 (.20, .00, 

.85)

r2
ν,ω .26 .11 (.15, .00, 

.49)
.09 (.12, .00, 

.59)
.13 (.16, .00, 

.63)
.11 (.14, .00, 

.63)

Notes: Averages (standard deviation, min, max) are reported.
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MODELS FOR PREDICTING SURGERY DURATION

We introduce models for predicting the surgery duration. The first 
type of models requires physician input, i.e., surgeons’ predictions. 
The second type of models do not need physician input and utilizes 
historical surgery duration data only. The third type of models 
combines physician input models with purely data-based models. 
As before, we let Y be the surgery duration, P be the surgeon’s 
prediction of Y, and X be a vector of the observed predictor variables 
available to both the surgeon and purely data-based models of 
surgery duration.

Models with Physician Input

In what follows, we propose three models that require the 
elicitation of physician input.

Physician input model. This model uses the surgeon’s prediction, 
as is, for surgery duration prediction. That is, we let M1 = P.

Corrected Physician Input Model. This model applies Theil’s optimal 
linear correction (Theil 1966) to the surgeon’s prediction, P.  Consider 
the OLS model of the surgery duration Y on P: 

Y = α1 + β1P + ϵ1. (5)

P is an unbiased prediction of Y if α1 = 0and is an efficient prediction 
of Y if β1 = 1 (Mincer and Zarnowitz 1969). If α1 ≠ 0 or β1≠ 1, then we 
can correct the surgeon’s prediction using the estimated parameters: 
M2 = (α̂1 + β̂1P.

For example, fitting (5) to the training data, we obtain α̂1 = 
57.00 and β̂1 = 0.75; see figure 3(a). Having α̂1 > 0 suggests that 
the surgeons are repeatedly underestimating Y. By adding α̂1, the 
historically observed average error, we eliminate the bias. Having β̂1 
< 1 suggests that surgeons are overestimating high values of Y, and 
underestimating low values of Y. By multiplying P by β̂1, we correct 
for this inefficiency.

The analyses of the previous sections suggest that the values 
of the correcting parameters α̂1 and β̂1 could vary across different 
groups. As such, we fit (5) to each specialty, surgeon, procedure, 
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and surgeon-procedure groups: see figure 3(b). We observe that, as 
expected, the values of the correcting parameters vary widely. 

Physician Coefficients Model. This model mimics what is known as 
the management coefficients model or the judgment bootstrapping 
model (e.g., see Bowman (1963), Camerer (1981), and Dawes, Faust, 

(a)   Scatter plot of the surgeon’s prediction versus surgery duration for the 
entire training set. The red line is the line of perfect predictions, and the 
blue dashed line is the regression line for equation (5) for the entire training 
set.

(b)   Scatter plot of the estimated linear correction parameters of equation (5) for 
each surgeon- procedure pair. Each dot is a surgeon-procedure pair.

Figure 3. Corrected physician input model.
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and Meehl (1989)). A prediction model is constructed by regressing 
the surgeon’s prediction onto the observed predictor variables as 
follows: 

P = α2 + β2X + ϵ2. (6)

Then the fitted values from the regression, M3 = α̂2 +β̂2X, are used 
to predict the surgery durations. This model systematizes surgeon 
judgment, and in so doing, it discards any intuition that the 
surgeon may have that is not consistent with the model. Hence, the 
physician coefficients model will outperform the surgeon’s prediction 
when the residuals of the model in (6) consist mainly of random 
variance in the surgeon’s prediction (Bowman 1963; Camerer 1981).

Purely Data-based Models

In what follows, we propose two models that do not require the 
elicitation of physician input.

Historical Average Model. This model simply uses the historical 
average of past surgery durations to predict the current surgery’s 
duration. Given a group with N samples in the training set, the 
surgery duration prediction is given by M4 = (∑iYi)/N.

Regression Model. This model fits the OLS model of the surgery 
duration Y given the observed predictor variables X: 

Y = α3 + β3X + ϵ3. (7)

Note that this is the same model as (1). The fitted values from the 
regression, M5 = α̂3 + β̂3X, are used to predict the surgery duration.

 
Combined Models

Suppose now that we have access to both the surgeon’s prediction 
and the data-based models. We propose four models which combine 
the two types of predictions.

Simple Regression Combination Model. This model assigns weights 
to M1 and M5 using the OLS model: 
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Y = α4 + β4M1 + γM5 + ϵ4. (8)

Note that instead of just assigning weights to each prediction value, 
this model adds a constant term and does not constrain the weights 
to add to unity. Studies have shown that (8) tends to be the best 
linear combination method for combining multiple predictions 
in terms of minimizing the mean squared error of the prediction 
(Granger and Ramanathan 1984). The resulting predicted value is 
M6 = α̂4 + β̂4M1 + γ̂M5.

Fitting (8) to the entire training data, we obtain α̂4 = –9.68 (p 
< 0.001), β̂4 = 0.32 (p < 0.001), and γ̂ = 0.73 (p < 0.001). If M1 
encompasses all of the features of M5, then we should have β̂4 
= 1 and α̂4 = γ̂ = 0 (Chong and Hendry 1986). Similarly, if M5 
encompasses all of the features of M1, then we should have γ̂ = 1 
and α̂4 = β̂4 = 0. However, both M1 and M5 are assigned non-zero 
weights.

In fact, this is expected from the analysis in the previous section. 
We have r2

ϵ,U = 0.12, and r2
ν,ω = 0.26 (see column (1) of table 2), which 

suggests that there is uncorrelated effective information in each of 
M1 and M5.

As before, we fit (8) to each specialty, surgeon, procedure, and 
surgeon-procedure group. We again observe that the estimated 

Figure 4. Simple Regression Combination Model. Scatter plot of the 
estimated parameters of equation (8) for each surgeon-procedure pair. 
Each dot is a surgeon-procedure pair.
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weights differ significantly, as illustrated by a scatter plot of the 
estimated parameters β̂4 and γ̂ for each surgeon-procedure pair in 
figure 4. There are surgeon-procedure pairs with β̂4 close to 0 and γ̂ 
close to 1. These are the surgeon-procedure pairs with r2

ϵ,U close to 0 
(see column (5) of table 2). That is, because the percent of variance 
unexplained by the purely data-based model that can be explained 
by the surgeon’s prediction is close to 0% for these pairs, M1 is 
assigned a very small weight.

Full Regression Combination Model. This model is similar to the 
purely data-based model in (7), with the only difference being the 
addition of the surgeon’s prediction, M1, as a predictor variable: 

Y = α5 + β5M1 + θX + ϵ5. (9)

The resulting predicted value is M7 = α̂5 + β̂5M1 + θ̂X.
In the Simple Regression Combination Model, the weights 

given to each predictor variable in the Regression Model in (7), β̂3, 
are maintained. The weights are just scaled by γ̂ when they are 
combined with the Physician Input Model in (8). In contrast, new 
weights, β̂5, are assigned to each predictor variable in the Full 
Regression Combination Model.

50% Physician + 50% Model. This model assigns equal weights 
to both the physician input and the purely data-based regression 
model. Assigning equal weights when combining forecasts is an 
attractive heuristic in practice because this method is intuitive and 
simple, and does not require estimating the optimal weights. Equal 
weights have also been shown to perform pretty well in practice 
(Blattberg and Hoch 1990). We define the following models: M8 = 
0.5M1 + 0.5M5 where we combine the physician input model with 
the regression model, and M9 = 0.5M2 + 0.5M5 where we combine 
the corrected physician input model with the regression model.

PERFORMANCE OF THE MODELS

We evaluate and compare the performance of the models proposed 
in the previous section. 
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Surgery Duration Prediction Performance Measures

Given an actual surgery duration Y and its corresponding point 
prediction Ŷ, we quantify the predictive accuracy of a given model 
using six performance measures (Ibrahim and L’Ecuyer 2013): (1) 
correlation coefficient (Corr) between Y and Ŷ, (2) mean squared 
error (MSE), (3) root mean squared error (RMSE), (4) mean absolute 
percentage error (MAPE), (5) the percentage of surgeries for whom Y 
is within an 1-hour interval of the prediction Ŷ (Cover-1hr), and (6) 
the percentage of surgeries for whom Y is within a 2-hour interval 
of the prediction Ŷ (Cover-2hr). We note that Cover-1hr is the key 
performance measure used at our study hospital to evaluate their 
effectiveness in operating room time allocation. 

Performance of Models with Physician Input

We first examine the performance of the physician input model 
M1. Column (1) of table 3 shows the accuracy of M1 when all the 
surgery cases are considered as one group. In columns (2)-(5) of 

Table 3. Performance of the surgeon’s prediction by different groupings.

(1)
One 

group

(2)
By specialty

(3)
By surgeon

(4)
By procedure

(5)
By surgeon-
procedure

No. of 
groups

1 12 42 49 81

Corr 0.70 .61 (.10, .46, 
.73)

.58 (.20, .06, 
.92)

.39 (.27, -.49, 
.92)

.41 (.28, -.49, 
.92)

MSE 6550 7351 (4077, 
3528, 15682)

7377 (6283, 
438, 24214)

7300 (7016, 
1213, 31177)

7660 (7645, 
438, 31177)

RMSE 81 83 (22, 59, 
125)

79 (34, 21, 
156)

79 (34, 35, 
177)

79 (37, 21, 
177)

MAPE 33 47 (18, 20, 
82)

39 (21, 11, 
98)

44 (25, 17, 
116)

39 (23, 11, 
116)

Cover-1hr 0.39 .30 (.11, .11, 
.52)

.34 (.19, .00, 
.92)

.33 (.17, .00, 
.74)

.34 (.20, .00, 
.92)

Cover-2hr 0.64 .56 (.15, .33, 
.78)

.60 (.22, .03, 
1.00)

.59 (.21, .10, 
1.00)

.59 (.24, .00, 
1.00)

Notes: Averages (standard deviation, min, max) are reported.
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table 3, we compute the accuracy for each group and report their 
average, standard deviation, minimum value, and maximum value. 
As can be expected from the analyses in previous sections, we 
observe that the performance of the physician input model varies 
widely across the different groups. For instance, MSE(M1) is 438 
for one surgeon-procedure pair and 31177 for a different surgeon-
procedure pair.

Next, we consider the performance of M2. As discussed before, 
if we fit (5) to the entire training data, we obtain α̂1 = 57.00 and 
β̂1 = 0.75. We can apply these correcting parameters to the entire 
test data. The resulting accuracy of M2 is reported in the first row 
under ‘Corrected physician input model’ in table 4. We observe that 
MSE(M2) (and consequently RMSE(M2)) decreases slightly compared 
to the physician input model (from 6550 to 6454). However, the 
performance declines slightly if we measure the accuracy using 
MAPE, Cover-1hr, or Cover-2hr. 

Rather than using the same correcting parameters for all 
surgeries, one can use different correcting parameters for each 
group. The resulting accuracy of M2 is reported in the second row 
under ‘Corrected physician input model’ in table 4. Using different 
correcting parameters for each specialty improves the performance 
as compared to using the same correcting parameters (e.g., MSE(M2) 
decreases from 6454 to 6002). As we consider more granular groups, 
the performance continues to improve. If we separately estimate (5) 
for each of the 81 surgeon-procedure pairs and apply the resulting 
81 sets of correcting parameters to the test set, the resulting MSE 
(M2) is 4823, which is a 25% decrease compared to using the same 
correcting parameters (from 6454 to 4823).

Lastly, we consider the performance of M3. If we fit (6) to the entire 
training set, M3 performs worse than M1 and M2 (see the first row 
under ‘Physician coefficients model’). This result suggests that in 
our empirical setting, systematizing surgeon judgment—and hence 
discarding the discretion/expertise/intuition that is inconsistent 
with the physician coefficients model—leads to worse performance.

Note also that the performance of M3 deteriorates as we fit (6) to 
more granular groupings. There are at least 11 coefficients that need 
to be estimated in each estimation of (6). Because the group sizes in 
both the training set and the test set decrease as we consider more 
granular groupings—as described in the Empirical Setting section, 
the smallest group size in the training set is 20 and that in the test 
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Table 4. Accuracy of Surgery Duration Predictions.

Corr MSE RMSE MAPE
Cover-

1hr
Cover-

2hr

Physician input model (M1) 0.70 6550 81 33 0.39 0.64

Corrected physician input model (M2)

One model 0.70 6454 80 36 0.38 0.63

Model by specialty 0.72 6002 77 32 0.40 0.66

Model by surgeon 0.78 5020 71 28 0.46 0.72

Model by procedure 0.76 5344 73 30 0.41 0.69

Model by surgeon-procedure pair 0.78 4823 69 27 0.46 0.73

Physician coefficient model (M3)

One model 0.64 7476 86 35 0.37 0.62

Model by specialty 0.64 7514 87 35 0.37 0.63

Model by surgeon 0.63 7838 89 36 0.38 0.62

Model by procedure 0.61 8287 91 37 0.37 0.62

Model by surgeon-procedure pair 0.61 8264 91 37 0.37 0.61

Historical average model (M4)

One model . 12539 112 55 0.23 0.46

Model by specialty 0.46 9917 100 45 0.31 0.54

Model by surgeon 0.58 8259 91 37 0.39 0.65

Model by procedure 0.69 6681 82 34 0.39 0.64

Model by surgeon-procedure pair 0.73 5849 76 30 0.44 0.70

Regression model (M5)

One model 0.76 5364 73 29 0.44 0.70

Model by specialty 0.75 5571 75 29 0.44 0.70

Model by surgeon 0.72 6052 78 30 0.43 0.68

Model by procedure 0.69 6703 82 30 0.44 0.69

Model by surgeon-procedure pair 0.68 6946 83 31 0.44 0.68

Combined model: regression simple (M6)

One model 0.79 4747 69 27 0.46 0.71

Model by specialty 0.79 4819 69 27 0.46 0.71

Model by surgeon 0.77 5052 71 28 0.45 0.72

Model by procedure 0.74 5708 76 28 0.46 0.71

Model by surgeon-procedure pair 0.73 5931 77 28 0.47 0.70
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set is 10—, overfitting and inaccurate performance evaluations are 
more likely to occur when we consider granular groupings, resulting 
in poor overall performance.

Performance of Purely Data-based Models

When we consider the surgeries as one group, M4 performs poorly 
(reported in the first row under ‘Historical average model’ in table 
4). This poor performance is expected because using the same 
prediction for all surgeries, 217.3 minutes (see table 1), ignores the 
heterogeneity in the surgery duration across the different groups. 
The accuracy of M4 improves as we consider granular groupings. 
If we use the historical average at the surgeon-procedure level, 
the MSE decreases by 11% compared to using the physician input 

Table 4. (continued)

Corr MSE RMSE MAPE
Cover-

1hr
Cover-

2hr

Combined model: regression all (M7)

One model 0.80 4577 68 27 0.45 0.73

Model by specialty 0.79 4711 69 27 0.45 0.72

Model by surgeon 0.76 5422 74 28 0.45 0.71

Model by procedure 0.73 6040 78 28 0.46 0.71

Model by surgeon-procedure pair 0.71 6517 81 29 0.45 0.70

Combined model: 50-1 (M8)

One model 0.78 4870 70 28 0.45 0.71

Model by specialty 0.78 4892 70 28 0.45 0.71

Model by surgeon 0.78 5010 71 29 0.45 0.71

Model by procedure 0.77 5176 72 29 0.45 0.71

Model by surgeon-procedure pair 0.76 5221 72 29 0.45 0.70

Combined model: 50-2 (M9)

One model 0.79 5080 71 30 0.43 0.70

Model by specialty 0.78 5011 71 29 0.45 0.71

Model by surgeon 0.78 4880 70 28 0.46 0.72

Model by procedure 0.77 5180 72 28 0.45 0.72

Model by surgeon-procedure pair 0.77 5115 72 27 0.47 0.72
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model (from 6550 to 5849).
Next, we consider the performance of M5. When we fit (7) to the 

entire training set, the resulting accuracy (reported in the first row 
under ‘Regression model’) shows that the MSE decreases by 18% 
compared to the physician input model (from 6550 to 5364). As was 
the case for the performance of M3, the performance of M5 declines 
when we separately estimate (7) for granular groupings. This is 
again due to the overfitting and inaccurate performance evaluation 
caused by the small group sizes in granular groupings.

When model performance is evaluated at the surgeon-procedure 
level, the regression model outperforms the physician input model, 
i.e., MSE(M1) > MSE(M5), for 38 pairs out of the 81 surgeon-
procedure pairs. As discussed before, one can expect the purely 
data-based model to outperform the physician input model as 
r2

Y,U and r2
ϵ,U decrease and r2

ν,ω increases. For the 38 pairs above, 
compared to the remaining 43 pairs, the mean r2

Y,U in the training 
data is significantly lower (.06 vs .14; p = 0.002 in the t-test for 
the equality of means), and the mean r2

ϵ,U in the training data is 
significantly lower (.09 vs .20; p = 0.003). The mean r2

ν,ω in the 
training data is lower but not statistically different (.24 vs .27; p 
= 0.420). However, we find that r2

Y,U, r
2
ϵ,U, and r2

ν,ω are not the only 
factors that determine whether the purely data-based models 
outperform the physician input model in the surgery duration 
problem. Because the performance of the purely data-based model 
depends on its power to correctly estimate its parameters, the 
purely data-based model would not perform well if the size of the 
training data is too small. In fact, for the 38 pairs in which the 
regression model outperforms the physician input model, the mean 
number of observations used to fit the purely data-based model in 
(7) is significantly higher (65.0 vs 43.5; p = 0.028) compared to the 
remaining 43 pairs in which the physician input model outperforms 
the regression model.

As discussed in the Literature Review section, the lack of historical 
data is a common problem in predicting surgery case duration using 
data-based models. Although one might speculate that this problem 
can be resolved by combining similar procedure codes, such 
approach is not practical because the surgery duration is likely to 
differ by a large amount even for a small change in the procedure 
code (Macario 2006). In such cases, using the physician input model 
or the corrected physician input model is a potential solution.
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Performance of Combined Models

We first consider the performance of M6. When we fit (8) to the 
entire training set, the resulting accuracy (reported in the first row 
under ‘Combined model: regression simple’ in table 4) shows that 
the MSE decreases by 28% as compared to the physician input 
model (from 6550 to 4747).

The wide variation in the performance of M1 evaluated at the 
surgeon-procedure level (see table 3) suggests that the optimal 
weights for M1 and M5 in the combined model should be different 
for different surgeon-procedure pairs. Hence, one might expect to 
see the performance of M6 to improve as more granular groups 
are considered. However, table 4 shows that the performance of 
M6 declines when more granular groupings are considered. This is 
because the accuracy of M5, one of the two inputs for M6, decreases 
as more granular groupings are considered due to the small-sample 
problem.

The performance of M7 is similar to that of M6, and it is the best 
performing model among the combined models. When we fit (9) to 
the entire training set, the resulting accuracy (reported in the first 
row under ‘Combined model: regression all’ in table 4) shows that 
the MSE decreases by 30% as compared to the physician input 
model (from 6550 to 4577). As was the case for the performances 
of M3 and M5, the performance of M7 declines as more granular 
groupings are considered. This is again due to the overfitting and 
inaccurate performance evaluation caused by small group sizes in 
both the training and test sets.

Lastly, we note that the 50% Physician + 50% Models, M8 and M9 
perform very well compared to the other combined models. This is in 
line with what the previous studies have found in other application 
areas (Blattberg and Hoch 1990), and is an interesting result 
especially given that such models do not require additional weight 
estimations.

Choosing the Best Model

In this subsection, we summarize the performance comparison of 
our different models. Our benchmark model is the model where the 
surgeon’s prediction of the surgery case duration is used directly as 
the prediction for the surgery duration. The correlation value of this 
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model with the actual surgery duration in our test set is 0.70, MSE 
is 6550, RMSE is 81, MAPE is 33, Cover-1hr is 0.39, and Cover-2hr 
is 0.64.

Among the models with physician input, the corrected physician 
input model performs the best, under the condition that the 
correction model is fitted separately for each surgeon-procedure 
pair. Its performance measure values are correlation 0.78, MSE 
4823, RMSE 69, MAPE 27, Cover-1hr 0.46, and Cover-2hr 0.73. 
Note that compared with the benchmark model, the MSE decreases 
by 26%. We emphasize that fitting a separate model for each 
surgeon-procedure pair is critical; this results from the fact that the 
value and accuracy of the surgeon’s prediction vary widely across 
the different surgeon-procedure pairs, as observed in the previous 
sections. If a single correction model is used for all surgeons instead, 
then the resulting MSE will be 6454, which is not much lower than 
the MSE of the physician input model (equal to 6550).

Among the purely data-based models, the regression model 
performs the best, under the condition that a single regression 
model is fitted for all surgeries. Its performance measure values are 
correlation 0.76, MSE 5364, RMSE 73, MAPE 29, Cover-1hr 0.44, 
and Cover-2hr 0.70. Compared to the benchmark model, the MSE 
decreases by 18%. As opposed to the corrected physician input 
model, the regression model performs the best when a single model 
is fitted to all surgeries. This is due to the small sample sizes when 
groupings are used, which leads to overfitting.

Among the combined models, the full regression combination 
model performs the best, under the condition that a single 
regression model is fitted for all surgeries. Its performance measure 
values are correlation 0.80, MSE 4577, RMSE 68, MAPE 27, Cover-
1hr 0.45, and Cover-2hr 0.73. Compared to the benchmark model, 
the MSE decreases by 30%. Similar to the regression model, it is 
important to fit a single model to all surgeries because of the small 
sample size problem when groupings are used.

Overall, the best performing model for our study hospital is the 
full regression combination model, under the condition that a single 
model is fitted for all surgeries. Note that this approach requires 
eliciting the surgeon’s prediction for every surgery, as well as the 
historical data of the characteristics of past surgery cases, to fit the 
regression model. Also, the hospital will need to communicate to 
surgeons how their predictions will be combined with a purely data-
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based model to produce the final predictions.
If the hospital does not have access to the historical data of the 

characteristics of the past surgery cases, or if surgeons prefer to 
rely solely on their own input, then the best model to use is the 
corrected physician input model, where the correction model is 
fitted separately to each surgeon-procedure pair. Compared with the 
full regression combination model, the MSE will increase by only 
5%, suggesting that this model is a great alternative. Also, surgeons 
may be less resistant to using the corrected physician input model, 
compared with the full regression combination model, because the 
prediction depends solely on an individualized correction of their 
own input.

In the case where the hospital finds eliciting the surgeon’s 
prediction for each surgery inconvenient, but has access to 
historical data of the past surgery cases, it can use the regression 
model, under the condition that a single regression model is fitted 
to all surgeries. Compared to the full regression combination model, 
the MSE will increase by 17%, which can be considered as the cost 
of forgoing the value of physician input.

CONCLUSIONS

The objective of this paper was to quantify the value that people 
can bring to operations. In particular, we focused on the context of 
predicting surgery durations in hospitals, and studied whether or 
not the physician’s input should be considered in that prediction 
exercise. To do so, we considered a wide array of models, either 
including or excluding the surgeon’s prediction of surgery duration, 
and compared these models in terms of predictive accuracy.

While it is clear that expert individuals, e.g., physicians in our 
context, may have key intuition or prior experience that should 
prove to be useful in operational decision-making, quantifying the 
value of that discretion/expertise/intuition remains, to a large 
extent, an open problem. In this paper, we took a step towards 
quantifying that value and, in so doing, derived some key insights. 
Importantly, we demonstrated that when studying the impact 
of people on operations, it is essential to account for the fact 
that people are, themselves, heterogeneous, e.g., some surgeons 
are clearly more accurate than others when predicting surgery 
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durations. We demonstrated how ignoring that heterogeneity leads 
to suboptimal operational decisions. We did this by comparing 
the predictive accuracies of tailored models (fitted to alternative 
groupings in the data) with aggregate, one-size-fits-all-type models 
that ignore such heterogeneity, and are fitted to the entire data set 
instead. Moreover, we proposed several easily implementable ways 
of accounting for that heterogeneity, e.g., we proposed correcting 
each surgeon’s prediction differently, depending on the identity of 
the surgeon. 

In studying the value of the physician’s input, we can provide 
an answer to the question of whether or not to discard that input, 
as was initially proposed in our study hospital. The answer to that 
question, based on our analysis, is an emphatic no. Indeed, there is 
value in the physician’s input that should not be disregarded, and 
doing so would lead to inferior operational decision-making in the 
hospital, as can be seen through our numerical study. Of course, 
it remains to test whether the conclusions of this paper would 
continue to hold in other healthcare settings, and with alternative 
data sets. In addition, future work may complement our results 
by exploring how using other machine learning methods can help 
further improve the accuracy of the different types of models we 
considered in this paper.
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