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Abstract

It is customary in conjoint studies to introduce the same set of potential 
explanatory variables for each subject, so as best to allow any possible 
trade-offs to be made. However, this presumption can mask the possibility 
of some subjects’ considering only a subset of the presented attributes. 
Moreover, such subsets of relevant attributes can vary considerably across 
the population. This paper presents a model which allows researchers to 
identify relevant explanatory variables for each subject separately. This is 
accomplished via a solution to the well-known variable selection problem in 
the context of discrete choice models; the proposed solution can be widely 
applied throughout choice studies and in fact to other response types, such 
as ratings, direct paired comparisons, and ranks, with appropriate changes 
in likelihood function.

When estimated on a choice-based conjoint data for dial-readout scale 
products, the proposed model is strongly preferred to the traditional 
random-effect specification for choice-based conjoint. A sizeable group of 
subjects, approximately 63%, were found to consider proper subsets of all 
attributes presented. There was a great deal of heterogeneity in attributes 
deemed relevant across subjects: the proportion of subjects who did not 
consider a given attribute among the six used in the study ranged from 
17.4% to 41.3%. For those who did consider a given attribute, estimated 
attribute level part-worths were essentially identical for the proposed model 
and the traditional random-effect conjoint model; but this was not the case 
for non-considered attributes. In fact, the traditional model was found to 
suffer from systematic biases in aggregate part-worth magnitudes. Finally, 
and most important for marketing practice, allowing for the possibility that 
some subject may not consider particular attributes can lead to substantial 
design and revenue differences in supposedly ‘optimal’ products, at both the 
individual- and the aggregate-level.
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1. INTRODUCTION

Traditional choice-based conjoint analysis has, for reasons of 
parsimoniousness, operated as if all subjects used an identical 
set of attributes, usually all that are available, to enact trade-offs. 
While the weights they assign to various explanatory variables 
and variable interactions can vary across subjects, the base set 
of variables typically is identical. Parsimony aside, there is no 
compelling theoretical justification for this presumption. In fact, 
the opposite is more plausible on its face: that each subject has a 
‘relevant set’ of attributes that are considered in deciding amongst 
presented alternatives. For many subjects, this set can be the same; 
in fact, the set may be the full set presented in the course of the 
conjoint task. It is difficult to argue, however, that this is invariably 
the case for all subjects, and there may in fact be a good deal of 
heterogeneity in relevant attributes across them.

It is instructive to consider a deliberately oversimplified example, 
illustrating how relevant attributes may require interpretations 
differing from extant ones. Consider a conjoint experiment on 
personal computers. Assume that there are two PC users – a “CPU-
intensive computation” user and a “novice internet surfing” user 
– and also that attributes planned for the conjoint experiment are 
manufacturer (IBM, Dell, HP), CPU clock speed (2GZ, 3GHZ), RAM 
size (1G, 2G), and technical support (good, poor). We expect the 
CPU-intensive user to consider such performance-related attributes 
as CPU clock speed and RAM size, but to place substantially 
less emphasis, or none at all, on the others (throughout, we use 
consider as a shorthand for which variables affect subject-specific 
choices, not to suggest specific cognitive strategies or the formation 
of consideration sets). However, the novice internet user may 
place greater weight on manufacturer and technical support, but 
be indifferent to the more performance-related attributes, owing 
perhaps to complete lack of familiarity. In this case, traditional 
conjoint models can allow non-zero part-worths for irrelevant or 
non-considered attributes. When researchers try, as is their wont, to 
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optimize product designs conditional on those part-worths, resulting 
product designs can be driven by variations across them. If the 
true part-worth variation is literally zero – as it would be whenever 
someone truly does not distinguish among levels of a given 
attribute, as the novice internet surfing user treats CPU clock speed 
– resulting optimal product designs can go awry. Moreover, this can 
occur even at the aggregate level. For example, the means of part-
worths for CPU clock speeds across two users will under-estimate 
the true part-worths for the advanced user, but over-estimate them 
for the novice user.

While this is, again, a deliberately idealized scenario, it 
nonetheless underscores that the assumption of fixed relevant 
attributes – that is, all subjects consider all attributes – can in 
some cases lead to biased inferences about the most basic drivers 
of purchase intent: individual- and aggregate-level part-worths. 
Consequently, purportedly optimal product designs may be anything 
but optimal. Models that preclude heterogeneity in relevant attribute 
configurations from the outset may therefore attribute choice 
observations to overtly-expressed attribute levels to a greater, or 
smaller, extent than they should.

To avoid such potential mis-attribution problems, this paper 
aims to develop a model that explicitly incorporates heterogeneity 
in relevant attribute configurations across subjects. At its core, this 
problem is related to the model specification issue, which is among 
the important unsolved problems in the conjoint research (cf., Green 
et al. 2001). The model specification issue refers to the identification 
of relevant explanatory variables for each subject among all 
candidate variables. It is not difficult to see that this problem is 
closely related to the variable-selection problem in statistics.

Most previous studies on the variable selection problem in 
statistics literature have focused mainly on (linear) regression 
models. Forward selection, backward elimination, or a combination 
thereof are among the most popular techniques using maximum 
likelihood methods, and have been built into common software 
packages. This class of methods, however, is inapplicable to choice-
based conjoint studies since, in choice models, the utilities are 
unknown random variables. Other popular selection methods in the 
maximum-likelihood approach utilize penalty functions such as Cp 
criterion (Mallows 1973), AIC (Akaike 1974) and BIC (Shibata 1984), 
all of which have been widely applied throughout choice modeling 
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studies. Unfortunately, using such penalty criteria to identify 
subject-specific relevant explanatory variables is enormously 
cumbersome, even when combinatorially feasible, since numerous 
models with different explanatory variable configurations must be 
estimated for each subject. There is also a large body of Bayesian 
literature on the variable selection problem in regression models (cf. 
Andrieu et al. 2001; Bernardo and Smith 1994; Laud and Ibrahim 
1995; Lindley 1968; Mitchell and Beauchamp 1988). Probabilistic fit 
in the form of latent mixture modelling has also drawn considerable 
attention (Brown et al. 1998; George and McCulloch 1993; Smith 
and Kohn 1996). Despite this sizeable body of variable selection 
literature in the linear regression setting, we are unaware of any 
results which can identify individual-specific sets of relevant 
explanatory variables for choice models. In short, variable selection 
for choice-based conjoint is very much an open problem.

As discussed before, the presumption that explanatory variables 
are the same for all subjects may lead to biased part-worth 
estimates, and consequently sub-optimal product designs based 
upon the estimates. For example, if a consumer truly does not 
consider a particular explanatory variable, any changes in the 
variable cannot, by definition, affect his/her choice decision; 
therefore, that variable’s true regression coefficient is zero for the 
consumer in question. The prevalent approach in prior literature 
(using choice-based conjoint models with fixed explanatory variables) 
is to have coefficients stem from some distribution, as in the popular 
hierarchical Bayesian specification, and hope that truly irrelevant 
variables will wind up with regression coefficients close to zero. 
This is well and good when the variable with which the coefficient 
is multiplied is relatively small. However, when modelers engage 
in optimization conditional on the estimated coefficients, small 
coefficients can be blown up considerably, whereas precisely zero 
coefficients cannot. Simply put, the difference between coefficients 
being “almost zero” and “exactly zero” is one not of degree, but of 
kind, when post hoc optimization is involved. Any such potential 
errors can be avoided entirely by identifying irrelevant explanatory 
variables for each subject separately, and setting the associated 
coefficients exactly to zero. This simply is not an option within 
existing schemes for coefficient heterogeneity.

This study aims to develop a model that enables researchers to 
identify a set of explanatory variables relevant to choice decisions 
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for each subject. Specifically, subject-specific relevant explanatory 
variables are identified by stochastically exploring possible 
configurations of all subsets of candidate explanatory variables. The 
proposed procedure is illustrated using real choice-based conjoint 
data set for a small durable. The application will help answer the 
following questions about the usefulness of identifying subject-
specific relevant explanatory variables:

1. �Are all explanatory variables relevant for all individuals? Do all 
individuals consider all attributes?

2. �If not, can researchers identify which explanatory variables 
appear to drive choice for each subject?

3. �To what degree does relevancy vary across subjects for each 
potential explanatory variable?

4. �How can knowing which variables are relevant to specific 
subjects help marketers enact better policies? 

The remainder of the paper is organized as follows. We first 
formulate a very general choice model setting, through which it 
is possible to tag certain subsets of variables as having non-zero 
coefficients. This formulation involves complex estimation and 
inference challenges, which are taken up at length. We then present 
a choice-based conjoint data set for dial-readout bathroom scales, 
and show how the model can be applied to it. Finally, we address 
each of the questions above, both in terms of the scale data set, and 
in terms of academic and managerial extensions.

2. A Multinomial Probit Model with Heterogeneous 
Relevant Explanatory Variables

This section presents a model that allows researchers to estimate 
relevant explanatory variables for each subject in a probit model 
setting.

2.1  Model Specification

Let yst = j denote the event that subject s (s = 1,…, S) chooses 
alternative j (j = 1, …., J) on choice task t (t = 1, …, Ts), where j = 
J indicates the “ no choice” option. Let A = {a1, …, aQ} be a set of 
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candidate explanatory variables, consisting of main effects and 
possibly interaction effects of attributes; Φ denote a set containing 
all possible subsets of Q elements in A, plus the null set, {  }; and R = 
(R1, …, RK)′ denote a K–dimensional design vector given all elements 
in A. For example, suppose there are three attributes, {N1, N2, N3}, 
each with three levels, and also that both main and interaction 
terms are considered, with interaction terms allowed even without 
corresponding main effect terms. If the design vectors for attribute 
levels are coded so that part-worths across levels for each attribute 
sum to zero, then: A = {N1, N2, N3, N1 × N2, N1 × N3, N2 × N3, N1 × N2 × 
N3}, Q = 7 size (Φ) = 128, and K = 26. Note that size (Φ) grows quickly 
with the number of attributes and levels, and that this growth 
constitutes the main challenge in both estimation and inference.

Let gs ∈ Φ denote a set of qs ∈ {0, 1, …, Q} relevant explanatory 
variables for subject s and xsjt

(ks) denote a ks–dimensional design 
vector given the set of relevant explanatory variables, gs, for subject 
s, alternative j, and choice task t. Note that ks depends upon the 
number of attribute levels, and that ks does not equal gs since all 
levels of an attribute enter into the design vector when the attribute 
is among relevant explanatory variables. Therefore, irrelevant 
explanatory variables, gc

s = (gs ∩ A)c, are ones that subject s are 
indifferent across all levels of the variables allowed in the conjoint 
study. Let xst

(ks) = (xs1t
(ks), …, x(ks)

s,J–1,t)′ denote a (J – 1) × ks design matrix 
given gs for subject s, and choice task t. Finally, utilities for subject s, 
alternative j, and choice task t are assumed to be Gaussian random 
variables: 

	
β β ε+ + −

≡

k ks s
sjt s st s sjt

hJt

u x j J
u

( ) ( )
0= , = 1, ..., 1, and

0,
	 (1)

 
where βs0 is a common intercept for subject s, βs

(ks) is a regression 
coefficient vector for xst

(ks), and εsjt is a Gaussian error structure. 
Note that only relevant explanatory variables, xst

(ks), enter the utility 
function and therefore xst

(ks) is treated as a random variable.
In order to capture heterogeneity, βs0 and βs

(ks) are specified as 
normal random effects:

	
β µ σ ∀s N s2

0 0 0( , ), for , 	
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ks
s i l l sN s i k( ) 2
, ( , ), for and = 1, , ,β µ σ ∀  	 (3)

 
where N(μ, σ2) is a univariate normal distribution with mean μ and 
variance σ2, and l ∈ {1, …, K} indicates that the i–th column of xst

(ks), 
xst,i

(ks), corresponds to the i–th element in R, Rl.
Then, choice probabilities follow the multinomial probit model:
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where us = (us1t, …, us,J–1,t)′ is a (J – 1) – dimensional latent utility 
vector for subject s and choice task t, 1J – 1 is a column vector of J – 
1 ones and Nm(a, B) denotes an m–variate normal distribution with 
mean vector a and variance-covariance matrix B. Note that we fix 
the covariance matrix of {εsjt} to an identity matrix, since it is far from 
clear how to introduce a general correlation or covariance matrix 
for numerous potential product profiles which vary across choice 
tasks (for a full discussion of this issue, see Haaijer et al. 1998); it 
is well-known that this assumption is considerably less problematic 
when heterogeneity on regression coefficients is accounted for in a 
suitably general manner (cf., Orme 1998), as in (2) and (3). When 
choice yht = j < J, the interval A

. 
sit is given by 



∞
 −∞ − + −

sit
sjt

, i j
A

u , i j j J
(0, ) if =

=
( , ) if = 1, ..., 1, 1, ..., 1.

	 (5)

Eq. (4) can be simplified by linearly transforming the (J – 
1)-dimensional vector ust using a (J – 1) × (J – 1) matrix Wj = {wmn}:

−

− − + −
jj

ii ij

w
w w i j j J

= 1,

= 1 and = 1, for = 1, ..., 1, 1, ... 1,
 

and all other elements of Wj equal to 0. The resulting (J – 
1)-dimensional vector is therefore u~st = Wjust and (4) can be rewritten 
as 

 

 β β− −−∞ −∞
+∫ ∫

k k 's sst stsjt J j J s st s j jp N u W x W W du
0 0 ( ) ( )

1 1 0= ( | (1 , ) . 	 (6)
 

For the “no choice” option, i.e., yst = J, the matrix WJ must be the 



78 Seoul Journal of Business

identity, WJ = IJ – 1. This completes the formal model specification, 
and discussions on methods for its estimation using discrete choice 
data follow.

2.2  �Estimation of Heterogeneous Relevant Explanatory Variables and Their 
Regression Coefficients

At the heart of the proposed model is a methodology for 
estimating relevant explanatory variables for each subject, gs 
and their regression coefficients, βs

(ks). Note that gs determines the 
dimension of design vector, ks, and the design matrix, xst

(ks). In order 
to identify gs, it is critical to explore its sample space, Φ; .this can be 
implemented by using an MCMC method. Popular methods such as 
the Gibbs sampling or the standard Metropolis-Hasting algorithm, 
however, are not applicable to this problem because they each 
require that the number of unknown quantities be fixed. But gs – 
and, consequently, ks xst

(ks), and βs
(ks)– needs to be allowed to change 

across iterations. So, alternative sampling methods must be used.
Several approaches have been proposed in the context of variable 

selection for regression models (cf., George and McCulloch 1993; 
Smith and Kohn 1996). George and McCulloch (1993) first put 
priors on all regression coefficients of the full design vector given 
all candidate explanatory variables. They then tested if each of 
these regression coefficients was zero by introducing latent binary 
indicators: one for each regression coefficient. This approach, 
however, may not be efficient because the resulting combinatorial 
problem grows exponentially with the dimension of the design 
vector given all candidate explanatory variables. In addition, in 
order to compute integrated likelihoods for model comparison, their 
approach does not completely remove regression coefficients from 
the model even when their binary indicators have zero values. Their 
approach is implemented by setting the regression coefficients to 
values arbitrarily close to zero if their binary indicators possess 
zero values. The approaches of Brown and Vannucci (1998) and 
Smith and Kohn (1996) completely remove regression coefficients if 
their binary indicators have zero values, but they also suffer from 
a similar combinatorial problem. As stated earlier, successfully 
navigating the very high-dimensional space of Φ bedevils variable 
selection even when explanatory variable configurations are not 
individual-specific.
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However, there is an MCMC algorithm that is applicable when the 
number of unknown quantities changes over iterations – Green’s 
(1995) reversible jump Metropolis-Hastings algorithm. This study 
employs this algorithm to estimate subject-specific set of relevant 
explanatory variables, gs and regression coefficients, βs

(ks) Note that 
there are three parameters that must vary across iterations: (1) the 
number of relevant explanatory variables, qs (equivalently ks); (2) the 
set of relevant explanatory variables, gs (equivalently xs

(ks)); and (3) the 
regression coefficients given the explanatory variable configuration, 
βs

(ks). With the reversible jump Metropolis-Hastings algorithm, it is 
possible to explore possible configurations of explanatory variables 
for each subject, under some mild distributional assumptions. 
Specifically, we write:

β β µ∝ Σk k k k ks s s s s
s s s s s s s s sp q x p x q p x q p q( ) ( ) ( ) ( ) ( )( , , ) ( | , , , ) ( | ) ( ),

 
where μ = {μl }

K
l=1 and Σ = {σl

2}Kl=1. The expression p(qs) denotes a prior 
distribution for qs ∈ {0, 1, …, Q}. Note that we allow a null set for 
gs when qs = 0. Given qs, a set of qs explanatory variables, gs, – or, 
equivalently, a (J – 1) × ks design matrix xst

(ks) – is sampled from Φ. 
Finally, the estimates of βs

(ks) can be obtained conditional on the 
design matrix, xst

(ks).
The question remains as to how to efficiently explore qs and gs. 

Simple uniform sampling of qs and gs may be dramatically less 
efficient for large Q. To address this problem, a scheme using 
four possible moves for each subject is employed: (1) adding one 
more explanatory variable (Birth); (2) deleting one among the 
currently present explanatory variables (Death); (3) replacing one 
currently present explanatory variable by one of the non-present 
ones (Replacement); and (4) updating βs

(ks) without any change in 
qs and xs

(ks) (Update). These four moves suffice to explore the space 
of configurations of qs, xs

(ks), and βs
(ks). Technical details are given in 

Appendix.

2.3  Priors

To complete the model specification, the following priors are 
introduced: 

µ ∀N m v  for s0 0 0( , ), , 	 (7)
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σ ∀IG a b  for s2
0 0 0( , ), , 	 (8)

l l lN m v for s  l K( , ), and = 1, , ,µ ∀ 

	 (9)

l l lIG a b  for s  l K2 ( , ), and = 1, , ,σ ∀ 

	 (10)
 

where the expression IG(a, b) denotes an inverse gamma distribution 
with shape parameter a and scale parameter b. Finally, the prior 
distributions relating to the possible configurations of relevant 
explanatory variables are as follows.

 
1. The prior distribution for qs, the number of explanatory 

variables, is 

λ ∀sp q Po s( ) = ( ), , 	 (11)
 

where Po(λ) is a Poisson distribution with a specified mean λ, 
truncated at Q, the number of all candidate explanatory variables.

2. The prior distribution for the set of explanatory variables, p(x(ks) 
| qs), is a constant, 

ks
s sp x q

V
( ) 1( | ) = ,

 
where  

 
 s

Q
v

q
=  is the number of possible sets consisting of qs  

 
explanatory variables among Q candidate ones. 

3. Empirical Application

3.1  Dial-readout Bathroom Scale Conjoint Data

The proposed model was fitted to a choice-based conjoint data 
set for a small durable product, specifically dial-readout bathroom 
scales.1) In the data set, 184 students in a variety of courses each 

  1)	 The author would like to thank the Optimal Design Engineering Laboratory at 
the University of Michigan for making this data set publicly available. Further 
information can be found at: http://ode.engin.umich.edu.
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completed 50 on-line choice tasks. In each task, subjects were 
presented with three product profiles, described by six attributes, 
and a “no-choice” option (see Table 0). Product profiles were 
presented both in tabular form and graphically, so that subjects got 
a sense of the dimensions and appearance of each scale, and could 
readily indicate which, if any, they most preferred. Therefore, S = 
184, J = 4, and Ts = 50 for ∀s.

For the simplicity of illustration and subsequent interpretation, 
only main effects for the six attributes were considered; the size of Φ 
was therefore 64 (= 26) and Q = 6 (see Table 2). Note that interaction 
terms can easily be handled in the proposed model, should 
researchers wish to; all algorithms would be identical, although a 
larger number of quantities would need to be sampled. In addition, 
the design vector given all six attributes, R, was defined so that part-
worths within each attribute sum to zero for identification purposes; 
therefore, K = 24. 

In addition, the data set was divided into two subsets: training 
data, ȳ, and hold-out data, ỹ. The hold-out data were the last 10 
choice tasks for each subject. Finally, the chosen values for priors 
were:

	 m v a b0 0 0 0= 0, = 20, = 3, = 40,
	

l l l lm v a b l K= 0, = 20, = 3, = 40, = 1, , , and

	
= 6.λ

Table 1. Attribute levels in the bathroom scale conjoint data set

Attributes Levels

Weight capacity (C) 200lb, 250lb, 300lb, 350lb, 400lb 

Platform aspect ratio 
(R; length/width)

0.75, 0.875, 1, 1.143, 1.333

Platform area (A) 100 sq. in., 100 sq. in., 120 sq. in., 130 sq. in., 
140 sq. in. 

Interval mark gap (G) 0.063 in., 0.094 in., 0.125 in., 0.156 in., 0.188 in. 

Size of number (S) 0.75 in., 1 in., 1.25 in., 1.5 in., 1.75 in. 

Price (P) $10, $15, $20, $25, $30
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3.2  Model Comparison

Two models, the proposed model M and a base-line model M0, 
were estimated to training data, ȳ. The model M0 is the standard 
random effect probit model, wherein subjects are assumed to 
consider all attributes, i.e., gs = {C, R, A, G, S, P} for ∀s. This model 
was estimated by allowing only the update move for βs

(ks), after setting 
qs = Q, ks = K, and xst

(ks) = R for ∀s. The burn-in period was 10,000 
iterations for both models, and all inferences were based on the next 
30,000 iterations. Figure 1 presents trace plots of the number of 
relevant attributes for a representative subject (s = 175); attribute 
configurations were apparently well mixed.

A decision regarding which of the models M and M0 is preferred 
can be made by computing the Bayes factor, the ratio of two 
competing models’ integrated likelihoods. A family of promising 
thermodynamic integration methods for computing integrated 
likelihoods have been discussed under the name of bridge and 
path sampling (Gelman and Meng 1998) and annealed importance 
sampling (Neal 2001). These thermodynamic integration methods 
have found to be among the most accurate methods for the 
computation of the integrated likelihoods. Consequently, this study 

Table 2. Candidate relevant attribute configurations

No. of 
Attributes

Set of Attributes

 0 {} 

 1 {C}, {R}, {A}, {G}, {S}, {P} 

 2 {C,R}, {C,A}, {C,G}, {C,S}, {C,P}, {R,A}, {R,G}, {R,S}, {R,P}, {A,G}, 
{A,S}. {A,P}, {G,S}, {G,P}, {S,P} 

 3 {C,R,A}, {C,R,G}, {C,R,S}, {CRP}, {C,A,G}, {C,A,S}, {C,A,P}, {C,G,S}, 
{C,G,P}, {C,S,P}, {R,A,G}, {R,A,S}, {R,A,P}, {R,G,S}, {R,G,P}, {R,S,P}, 
{A,G,S}, {A,G,P}, {A,S,P}, {G,S,P} 

 4 {C,R,A,G}, {C,R,A,S}, {C,R,A,P}, {C,R,G,S}, {C,R,G,P}, {C,R,S,P}, 
{C,A,G,S}, {C,A,G,P}, {C,A,S,P}, {C,G,S,P}, {R,A,G,S}, {R,A,G,P}, 
{R,A,S,P}, {R,G,S,P}, {A,G,S,P} 

 5 {C,R,A,G,S}, {C,R,A,G,P}, {C,R,A,S,P}, {C,R,G,S,P}, {C,A,G,S,P}, 
{R,A,G,S,P} 

 6 {C,R,A,G,S,P} 
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used the annealed importance sampling method.
In the annealed importance sampling method, all unknown 

parameters of a given model, θ, are sampled sequentially from N 
consecutive annealed distributions; each distribution is formulated 
as

n n
n Mf f f n N1

0( ) = ( ) ( ) , = 1, , ,α αθ θ θ −


	 (12)
 

where 0 = α1 < α2 < … αN = 1 are importance weights. For the 
computation of the integrated likelihood, f0(θ) is set to be the prior 
distribution and fM(θ) is set to be the product of prior and likelihood. 
Then, the estimate of the integrated likelihood becomes:

NM
n n n

n
m n

k f
M

( ) 1

=1 =2

1= ( ) ,α αθ − −∑ 	 (13)
 

 
where M is the total number of iterations and θ(n) is the value of θ 
at the n-th annealed step. Note that this method does not require 
an importance sampling distribution, which presents the practical 
problem of needing to be close enough to the true posterior 
distribution. It is also critical that {αn}

N
n=1 must be spaced smoothly 
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Figure 1. Trace plots: No. of relevant attributes for s = 175
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over an interval [0, 1] so that αn – αn–1 goes approximately in inverse 
proportion to n, and that θ(n) must be sampled from fM(θ)αnf0(θ) rather 
than from fM(θ)f0(θ). We used 201 αn, which were spaced geometrically 
from 0 to 1.

Table 4 presents estimates of integrated likelihoods for both 
models obtained by the annealed importance sampling method. 
The resulting logarithm of the Bayes factor was –719.78. This is 
fairly strong evidence supporting heterogeneity in relevant attribute 
configurations across subjects.

In addition, prediction tasks for hold-out data, ỹ, were conducted. 
Specifically, two quantities were computed: (1) posterior predictive 
likelihood, p y y p y p y d( | ) = ( | ) ( | )θ θ θ∫ 

, and (2) the proportion of 
correctly predicted choices for the given model (the so-called ‘hit 
rate’). The posterior predictive likelihood is an average of conditional 
predictions for the hold-out data over the posterior distribution of 
θ obtained from the training data across MCMC iterations. The hit 
rate was obtained by first sampling latent utilities for each choice 
observation in ỹ given θ in each MCMC iteration, computing the 
proportion of all choices for which the actual product profile chosen 
equals the product profile of the highest utility value in each MCMC 
iteration, and then taking an average of the proportions across 
iterations. As given in Table 4, the proposed model offered better 
predictive performance for both tasks. Both training and hold-
out data favor the proposed model over the baseline model. Based 
on this evidence, results of the proposed model, M, are further 
elaborated.

3.3  Estimation Result of the Proposed Model

3.3.1  Estimates of μ0 and σ0
2

The estimates of μ0 and σ0
2 were –1.2084 and 7.0778 with standard 

deviations 0.2071 and 0.9418, respectively. The [5 percentile, 
95 percentile] intervals of μ0 and σ0

2 were [–1.5481, –0.8674] and 

Table 4. Model comparison result

Model
Log of Integrated 

Likelihood
Hold-out data

Posterior Predictive Likelihood Hit Rate

M0

M
–7361.67
–6641.89

–3766.0
–3291.7

60.07%
61.26%
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[5.7282, 8.7502], respectively, implying statistical difference from 
zero in the first case, and also that subjects tended to have weak 
intrinsic preferences towards scale products. The estimates of μ0 
and σ0

2 under the base-line model, M0, were –1.0560 and 6.4747 with 
standard deviations 0.2008 and 0.9602, respectively. A statistic to 
test differences in estimates of μ0 and σ0

2 across two models is w = 
(differences in posterior means)/ summation of posterior variance ;  
these were –0.5283 and 0.4484, respectively, suggesting that 
estimates of μ0 and σ0

2 across two models were essentially the same.

3.3.2  Estimates of Subject-specif﻿ic Relevant Explanatory Variables
The presented model allows for posterior inference regarding 

relevant attribute configurations for each subject. In order to 
do so, researchers need to only store subject-specific variable 
configurations across MCMC iterations. Figure 5 depicts the 
histograms of relevant attribute configurations for subjects s = 2 
and 139, who were fairly representative of the sample. For both 
subjects, the full set of candidate attributes, {C, R, A, G, S, P}, was 
not the most preferred among possible 64 subsets of six available 
attributes. In fact, the posterior proportions for the full set were 0.9% 
and 0% for s = 2 and 139, respectively. The modal relevant attribute 
configurations were {R, G, P} and {S} for s = 2 and 139, respectively. 
It is also noticeable that the number size attribute was included 
in all non-null sets of relevant attributes for s = 139, implying that 
the attribute is among most important attributes for the subject, 
irrespective of the coefficient associated with it. Similarly, subject 
s = 2 appeared to consider price to a greater extent than other 
attributes.

Figure 2 suggests that there is substantial variation in the 
number of attributes considered by different subjects. Specifically, 
many subjects might not consider the full set of six. To examine this 
further, the modal relevant attribute configuration was found for 
each subject by examining proportions of attribute configurations 
across iterations. Figure 3 presents a histogram of the size of such 
modal attribute configuration sets across subjects. Among the 
184 subjects, 68 (37%) were found to consider all six attributes. 
The remaining 116 subjects (63%), however, evidently considered 
subsets of the six available attributes. In particular, five subjects 
(2.7%) were found to consider none of six attributes; it may well be 
that the task was unmotivating for them, or they lacked any relevant 
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experience in the product class. Still, it is reassuring that so small 
a group of subjects fell into this no-variable category. Figure 7 also 
gives a histogram of the number of subjects whose modal relevant 
attribute configurations include a given attribute. The proportions 
ranged from 58.7% to 82.6% across the six attributes. The interval 
mark gap attribute – which determines readability – was found to 
be most frequently considered while the number size attribute was 
least frequently considered. In summary, Figures 3 and 4 together 
offer fairly detailed evidence that there exists a substantial variation 
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Figure 2. Histogram of relevant attribute configurations
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in terms of relevant attribute configurations across subjects.
Finally, Figure 5 presents a histogram of the modal relevant 

attribute configurations across subjects. The most preferred 
attribute configuration among those who do not consider all six 
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Figure 3. Histogram of the size of the modal relevant attribute 
configurations

Figure 4. Histogram of the number of subjects whose modal relevant 
attribute configurations include a given attribute
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attributes was {C, R, A, G, P}, the configuration lacking the number 
size attribute (S). Since S was the least common attribute across 
subjects’ modal attribute configurations, this would be expected. It 
is interesting to note that the fact that five-element sets are most 
common among all subsets of six attributes (as shown in Figure 3) 
does not imply that all five-element sets are very likely. In fact, only 
three of the six possible five-element sets were somewhat common, 
and two of them were not indicated for even a single subject. Even 
the empty set and the singleton containing just {G} were more 
common than several of the five-element subsets. The pattern 
of subject-specific modal attribute configurations are quite a bit 
more complex than a multinomial model built, for example, on the 
baseline frequencies of each of the attributes’ posterior proportions 
(recall, 58.7% to 82.6%) alone would indicate. In short, a good deal 
of heterogeneity is indicated, and it is not of an easily predictable 
sort.

In addition, a type of face validity for the subject-specific relevant 
attribute configurations was checked. The original data set also 
included information on subjects’ weights, heights, and ages. The 
first of these is obviously relevant to scale choice, and one might 
expect that, when all things equal, heavier subjects would prefer 
greater weight capacities. The 184 subjects therefore were divided 
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into two groups: those who do not have the weight attribute in 
their modal attribute configurations (A), and those who do (B). The 
size of groups A and B were 43 and 141, respectively. The average 
weights were 141.3lb and 161.5lb for groups A and B, respectively, 
a strong difference (t182 = –3.31). While this is an ad hoc test, two 
points are worth noting: weight information was not used anywhere 
in the experiment or the estimation; and nowhere was the size of 
the associated coefficient for weight capacity used, only whether it 
appeared in the modal attribute configuration at all.

3.3.3  Estimates of Subject-specific Part-worths
There are two ways to obtain subject-specific part-worths given 

subject-specific attribute configurations: (1) obtain estimates of part-
worths conditional on the most preferred attribute configurations 
under M; and (2) take averages of part-worths of attribute levels 
across MCMC iterations under M. In the former approach, the 
estimate of part-worth associated with the most preferred attribute 
configuration for a given subject can be obtained from MCMC 
iterations by taking averages of part-worths across iterations 
where simulated attribute configuration equals the most preferred 
attribute configuration. By doing so, the estimated part-worths for 
irrelevant attribute levels are set to zeros. However, we follow the 
latter approach since the former does not take the uncertainty on 
relevant attribute configurations into account. Note that the part-
worths of irrelevant attribute levels at a given MCMC iteration are all 
set to zero by definition.

In addition, given subjects’ modal attribute configuration,.we 
divided all subjects into two groups: (1) those who have an attribute 
i (i = 1, …, 6) in their modal attribute configurations (Si

(1)) and (2) 
those who do not have an attribute i (i = 1, …, 6) in their modal 
attribute configuration (Si

(0)). The sizes of S1
(1), …, S6

(1) were given in 
Figure 4.

Figure 6 gives plots of subject-specific part-worths for six 
randomly selected subjects, one for each attribute, as representative 
examples. In the figure, the left and the right columns consist of 
subjects from Si

(1) and Si
(0), respectively. Solid and thin lines represent 

estimated part-worths under model M and M0, respectively. Dotted 
lines indicate the [estimate ± 1.64× (std. dev.)] intervals. In addition, 
w, the statistic to examine whether two estimated part-worts at a 
given attribute level are statistically meaningfully different from 
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each other, are given in the figure. 
For those in Si

(1), the estimated part-worths under M and M0 
were essentially the same in terms of magnitude and curve shape. 
However, it is noticeable that for subjects in the right column, 
those from Si

(0), there existed statistically meaningful differences in 
the estimated part-worths across two models. For those in Si

(0), the 
part-worths of attribute levels under M are essentially zeros, but 
M0 exhibits fairly non-linear part-worth curves. Note that at some 
attribute levels, the part-worth estimates under M0 are statistically 
meaningfully different from zeros. For example, for s = 43, the part-
worth for the third level of the “platform aspect ratio attribute”, 
which was different from zero, was over-estimated by M0 compared 
to M. Note that the part-worth curves for those in Si

(0) under M 
are flat at zero, since the attribute i was not among attributes 
considered. Clearly, for those in Si

(0), the part-worth estimates under 
M0 tend to almost suspiciously vary around zero across attribute 
levels, and to have pronounced non-linearities in their part-worth 
curves.

Figure 6 suggests that part-worths estimated under M0 can be 
biased for subjects in Si

(0) if heterogeneity in relevant attribute 
configurations is not accounted for. To examine this further, we 
computed the proportion of subjects whose estimated part-worths 
under M differ statistically meaningfully from those under M0 for 
each attribute level across Si

(0) and Si
(1). Figure 7 gives a plot of such 

proportions across attribute levels. For Si
(1), estimated subject-

specific part-worths across the two models appeared to be the same 
for all attribute levels, except the first and fifth levels of the “platform 
aspect ratio” attribute, the first level of the “platform area attribute”, 
and the second level of the “price” attribute. For Si

(0), there were, 
however, a sizeable portion of subjects whose estimated part-worths 
differed across the two models for all attribute levels (except the fifth 
level of the “ interval mark gap” attribute). This pattern of results, 
therefore, seems to indicate that part-worth estimates under M0 can 
be more biased for the subjects in Si

(0).

3.3.4  Estimates of Aggregate-level Part-worths
In the model M, we classified all subjects into two groups for each 

attribute: Si
(0) and Si

(1), i = 1, …, 6. In this section, we examine the 
effect of the existence of these two groups on aggregate-level part-
worths. As a representative example, let us focus on the number size 
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attribute (i = 5), although the ensuing procedure and discussions 
are equally valid for the other five attributes.

First, we computed the aggregate part-worth curves by taking 
averages of subjects’ part-worths across iterations. Figure 7 gives 
plots of the estimates and the [estimate ± (1.64 × std.dev.)] intervals 
of the aggregate part-worth curves for the number size attribute 
across (a) all subjects under M0, (b) the subjects in S5

(0) under M, and 
(c) the subjects in S5

(1) under M. Statistically meaningful differences 
were found for all three pairs of S5

(0), S5
(1), and M0. implying that the 
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aggregate part-worth curve for S5
(0) was different from that for S5

(1) 
and that the aggregate part-worth curve under M0 can be biased 
for both S5

(0) and S5
(1). Furthermore, it is clear from Figure 8 that 

aggregate part-worths under M0 tended to under-estimate those for 
S5

(1) and over-estimate those for S5
(0) in magnitude. Let us examine 

this curious fact further. 
Figure 9 gives probability density plots of part-worths for the first 

and the fourth levels of the number size attribute, 0.75 in. and 1.5 
in., across subjects for M0, S5

(0) and S5
(1). Note that the densities for 
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S5
(0) and S5

(1) were normalized so that the integrals of two density 
functions have value 1. The figure clearly shows that, under M, 
there are two distinct modes: (i) S5

(0) shows highly concentrated 
distributions with modal value zero for both levels, and (ii) S5

(1) shows 
distributions deviating somewhat from zero, with modal values 
–4.27 and 2.05 for 0.75 in. and 1.5 in., respectively. One can also 
see some uncertainty regarding inferences about grouping subjects 
into the two classes, S5

(0) and S5
(1), since the probability densities for 

these two groups overlap one another about zero. Note that part-
worths can take positive or negative values for subjects in S5

(1). In 
order to examine the degree of uncertainty, we first found the [5 
percentile, 95 percentile] intervals of part-worths across subjects 
in S5

(0); the resulting intervals were [–0.4515, 0.0001] and [–0.0043, 
0.2621] for 0.75 in. and 1.5 in., respectively. Then, we computed the 
proportion of subjects in S5

(1) whose part-worths are located within 
these intervals. The computed proportions were 2, 2% and 2.7% for 
0.75 in. and 1.5 in., respectively, suggesting that the distributions 
of part-worths between S5

(0) and S5
(1) are indeed different from one 

another, and further that all subjects were fairly sharply classified 
into two groups under M.

In addition, it is apparent that the modes of the distributions 
of part-worths under M0 are located between the modes of the 
distributions for S5

(0) and S5
(1). This is consistent with the previously-

discussed under- and over-estimation phenomenon under M0, in 
terms of part-worth magnitudes. Since the proposed model M allows 
for two mixing components, one for S5

(0) and the other for S5
(1), we can 

compute the weighted sample mean and standard deviation for the 
part-worth of the l-th level of attribute i, across all subjects under M, 
μil and σil, as follows: 

il i il i il
(0) (0) (0) (1)= (1 ) ,µ π µ π µ+ − 	 (14)

( ) ( ) ( ) ( )il i il i il
2 2 2 2(0) (0) (0) (1)= 1 ,σ π σ π σ+ − 	 (15)

Here πi
(0) ∈ [0, 1] is the proportion of subjects in Si

(0), and μil
(n) and σil

(n) 
are mean and standard deviation of part-worths of the l-th level of 
an attribute i across subjects in Si

(n), n = 0, 1. For consistency, we 
computed the weighted sample means and standard deviations of 
the part-worths for 0.75 in. and 1.5 in. of the number size attribute, 
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μ51, μ54 σ51 and σ54. The proportion of S5
(0), π5

(0), was 0.41 (= 76/184). 
The sample means and standard deviations across different samples 
are given in Table 9; These values result in μ51 = –2.0523, μ54 = 0.8506 
σ51 = 1.0621 and σ54 = 0.5542. 

First, it is noticeable that, for both levels, the sample standard 
deviations of part-worths under M0 are somewhat larger than the 
weighted sample standard deviations of part-worths under M. This 
is not surprising since M0 allows part-worths for subjects in S5

(0) to be 
deviated from zero. To check this further, for all attribute levels, we 
examined differences between sample standard deviations of part-
worths under M0 and weighted sample standard deviations under 
M; the differences ranged from 0.0641 to 10.0401, showing that the 
sample standard deviations of part-worths under M0 were 10.2% 
12664.5% larger than the weighted sample standard deviations of 
part-worths under M. This result implies that the sample standard 
deviations of part-worths under M0 may be systematically over-
estimated since M0 ignores the existence of Si

(0).
In addition, the weighted sample means of part-worths under 
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Figure 9. Density plots of part-worths for 0.75in and 1.5in levels of the 
number size attribute across subjects

Table 4. Summary of subjects’ part-worth distribution for the first and the 
fourth levels of the number size attribute

Sample 0.75 in. 1.5 in.

All subjects under M0 
Subjects in S5

(0) under M 
Subjects in S5

(1) under M 

–1.9776* (1.6216)**
–0.0695 (0.1519)
–3.4476 (1.8063)

0.8226 (0.7898)
0.0456 (0.1142)
1.4170 (0.9048)

Note: * mean; ** standard deviation
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M were found to be essentially equal to the sample means of part-
worths under M0. For example, for the 0.75 in. level, the difference 
between the sample mean under M0 and the weighted sample 
mean under M was 0.0747, with resulting statistic w = 0.04. By the 
same token, we examined the difference between the sample mean 
under M0 and the weighted sample mean under M for each of 30 
attribute levels; the difference ranged from –0.5153 to 0.3098, and 
the resulting statistic w ranged from –0.15 to 0.15. Therefore, the 
weighted sample means under M and the sample means under M0 
were essentially identical for all 30 attribute levels.

Taken together, these examinations suggest that ignoring the 
existence of Si

(0) leads to under-estimation of aggregate part-worths 
for subjects in Si

(1) and over-estimation of aggregate part-worths 
for subjects in Si

(0), since the aggregate part-worths under M0 are 
essentially the weighted average of aggregate part-worths across 
Si

(0) and Si
(1). As (14) implies, the under-estimation bias for the 

aggregate part-worths for Si
(1) is likely to become ever more severe 

as πi
(0) increases. Therefore, when M0 is fitted to all subjects without 

controlling heterogeneity in relevant attribute configurations (even 
though there exists a sizeable proportion of subjects who do not 
consider all attribute), the estimate of aggregate-level part-worths 
under M0 can be biased for both Si

(1) and Si
(0), since they were 

compromised by the existence of Si
(0).

3.3.5  Inferences About Optimal Product Design
Figure 6 implies that marketers may reach different conclusions 

about optimal product designs depending on which of the two 
models, M and M0, is followed. In particular, for those in Si

(0), M 
gives flat part-worth curves (at zero), while M0 produces part-worth 
curves varying around zero. In order to find optimal product designs 
after taking subjects’ relevant attributes into account, we checked 
whether part-worths for levels of irrelevant attributes are zero by 
examining whether zero values are located within the [estimate ± 1.64 
× std.dev.] intervals of part-worths for all five levels for an attribute 
i (i = 1, …, 6) for each subject in Si

(0); all subjects in Si
(0) were found 

to have zero part-worths for all levels of the attribute, suggesting 
that the part-worths of all levels of the attribute can safely be set to 
zero for all subjects in Si

(0). After setting the part-worths of all levels 
of attribute i to zero for subjects in Si

(0), we identified the optimal 
scale product for each subject. Similarly, under M0, we identified the 
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optimal scale product for each subject given the estimated subject-
specific part-worths. Note that we do this in the absence of a cost 
model for the producer – which would typically be required to trade-
off demand with the various levels of price and other attributes – 
and instead focus on which set of attribute levels is most preferred 
by each consumer.

As an example, let us consider subject s = 20. For the subject, 
price was never included in attribute configurations across MCMC 
iterations and his/her modal attribute configuration was {C, R, A, 
G, S}. Note that there were five ‘optimal’ product designs for s = 20 
under M: a combination of {300lb, 1.143, 110 sq. in., 0.188 in., 1.25 
in.} for non-price attributes and each of all five price levels. The 
optimal product design for s = 20 under M0 was {300lb, 1.143, 110 
sq. in., 0.188 in., 1.25 in., $20}, which is one of five optimal product 
designs identified by M. Note that, for M0, part-worths across price 
levels for s = 20 were (0.45, 0.70, 1.02, –0.92, –1.25).

Similarly, we identified optimal product designs for all subjects 
and found that there was a great deal of heterogeneity in terms of 
optimal product designs across subjects. In M0, among 184 optimal 
product designs, one for each subject, only four product designs 
were most preferred by two subjects and others were most preferred 
by only one subject. The four modal product designs were {350lb, 
0.75, 140 sq. in., 0.125in, 1.75in, $10}, {400lb, 0.875, 100 sq. in., 
0.188in, 1.25in, $15}, {400lb, 0.875, 140 sq. in., 0.125in, 1.75in, 
$10} and {400lb, 1, 120 sq. in., 0.094in, 1.75in, $10}. In M, there 
were 15,625 different product designs across subjects, out of a 
possible 56 = 15,625 designs. Note that some subjects could have 
multiple optimal product designs under M if they do not consider all 
six attributes. Among 15,626 product designs, the modal product 
design was {250lb, 1, 100 sq. in., 0.156 in., 1.75 in., $10}, which was 
most preferred by 18 subjects. The main point of these comparisons 
is this: if a marketer chooses an optimal product design by 
examining modal values across subjects, the two models lead to 
very different answers. To further support this point, we calculated 
the number of subjects whose identified optimal product designs 
under M0 were not among those under M; the resulting count was 
63 (34.2%) again suggesting that inferences about optimal product 
designs differ substantially across M and M0.

As mentioned above, thus far optimal product designs were those 
maximizing subjects’ utilities, not those reflecting the firm’s overall 
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objectives, usually some form of profitability, sales or market share. 
Clearly, for subject s = 20, {300lb, 1.143, 110 sq. in., 0.188 in., 1.25 
in., $20} cannot be optimal in terms of profit for the firm: since s 
= 20 was indifferent across a given price range between $10 and 
$30, the firm could charge the subject $30 rather than $20 Since 
we do not have cost information, we examined revenues given 
optimal product designs across subjects. Given subject-specific 
optimal product designs under M0, the total revenue across the 184 
subjects was $2,565. The total revenue for subjects in S6

(1) given 
optimal product designs under M was $1,695. For subjects in S6

(0), 
we assumed that $30 will be charged to those who do not have the 
price attribute in their modal attribute configurations and the total 
revenue from them was $1,470. The resulting total revenue from S6

(0) 
and S6

(1) together was therefore $3,165, which is 23.4% greater than 
that suggested under M0. Such a difference is non-trivial. We must 
caution that our results do not suggest that subjects like s = 20 
were totally indifferent to all prices greater than $30, just those used 
in the conjoint study. Indeed, we believe a fertile avenue for future 
research is using the method presented here to help identify subject-
specific relevant ranges, ones which are relevant for each subject for 
every attribute in the study. Although the levels used in the scale-
design study were chosen to cover over 90% of the scales on the 
market for each attribute, apparently a goodly proportion of subjects 
found themselves indifferent across those ranges for every one of the 
attributes. While this may be surprising for price, one could argue 
that even the highest level, $30, was considered reasonable for a 
small durable, and some subjects simply did not respond especially 
strongly to reductions from this level.

4. Conclusion

Previous studies have, for reasons of tractability and parsimony, 
presumed that all subjects in a conjoint experiment consider each 
of the presented attributes in enacting trade-offs across product 
profiles. This assumption, though attractive and expedient, 
lacks strong theoretical and empirical justification; consider, for 
example, that wealthy subjects may be completely indifferent across 
prices for certain inexpensive products, or that PC power users 
may focus almost entirely on performance attributes and ignore 
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others (at least within the ranges on offer in the marketplace). 
Therefore, the possibility remains that some subjects may consider 
a subset of all attributes, and that these considered attributes 
may substantially vary across subjects. This is closely related to 
one of the unsolved issues in the conjoint model literature, the so-
called Model Specification problem: which attributes are relevant to 
observed overall attractiveness scores for product profiles, whether 
they be typically measured by discrete choices, ratings or ranking 
orders, for each subject? Previous studies have been silent on the 
model specification issue, implicitly taking part-worths of irrelevant 
attributes for trade-off evaluation tasks be close to zero. This paper 
presented a comprehensive methodology to address the model 
specification issue, explicitly identifying relevant attributes for each 
subject.

The proposed model, as fitted to choice data on dial-readout 
bathroom scales, performed better than the traditional random-
parameters choice-based conjoint model in both training and 
prediction data. Our major findings can be summarized as follows:

1. �Evidence was strong that a sizeable group of subjects in 
the experiment considered a proper subset of all attributes. 
Among 184 subjects, only 68 (37%) were found to consider 
all six attributes; the remaining 116 subjects (63%) evidently 
considered a smaller number of attributes, deeming at least one 
of them essentially irrelevant.

2. �There was a great deal of heterogeneity in attributes deemed 
relevant across subjects: the proportion of subjects who did not 
consider a given attribute ranged from 17.4% to 41.3% across 
the six attributes. Moreover, the 116 subjects who appeared 
to consider fewer than six attributes exhibited a great deal of 
variation in which were relevant to them.

3. �For those who do consider a given attribute, estimated attribute 
level part-worths were essentially identical for the proposed 
model and the traditional random-parameters conjoint model.

4. �For those who do not consider an attribute, we found a 
statistically meaningful difference in part-worths under the 
traditional and the proposed model. In particular, the traditional 
model yielded part-worth curves hovering suspiciously around 
zero across attribute levels.

5. �When the traditional model is fitted to all subjects without 
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controlling heterogeneity in relevant attribute configurations – 
even though there exists a sizeable proportion of subjects who 
consider subsets of all attributes – the estimate of aggregate-
level part-worths for a given attribute under the traditional 
model tends to under-estimate average part-worths of the 
attribute across those who consider the attribute; this comes 
about because the aggregate-level part-worths are apparently 
compromised by the existence of a group of subjects who do 
not consider that attribute. Similarly, for those who do not 
consider the attribute, the traditional conjoint model is likely 
to over-estimate part-worths. This over- and under-estimation 
phenomenon resulted from the fact that the aggregate part-
worths under M0 would merely be weighted averages of part-
worths across these two distinct groups of subjects.

6. �Incorporating the possibility that every subject may not consider 
all attributes led to quite a substantial difference in inferences 
regarding optimal product designs at both the individual- and 
the aggregate-level. This difference could well be non-trivial in 
terms of revenue (or, presumably, profit) impact. 

The proposed model was developed in a choice-based conjoint 
analysis setting. However, the general methodology underlying it 
can easily be applied to other measurement methods used conjoint 
studies, such as rating, pair-wise comparison and ranking, with 
appropriate changes in likelihoods (cf., Marshall and Bradlow 
2002). For example, for the ranking data, the likelihood must be 
changed to the ordered probit model (Albert and Chib 1993) but the 
reversible Metropolis-Hastings algorithm given in Appendix is not 
changed. The proposed model was also designed to identify relevant 
explanatory variables among a priori fixed attributes. Therefore, 
if the number of attributes and levels is not unmanageable, the 
proposed model is likely to be relatively efficient, at least compared 
with alternative methods of sampling the space of possible variable 
configurations.

Although we have not investigated this in detail, we hope that 
the model might be applied to a variety of conjoint data sets, and 
that some consensus emerges regarding its efficiency in real-world 
settings. When the number of attributes and levels is rather large, 
the proposed model may not be efficient, even though it is still 
applicable if subjects each engage in a sufficiently large number 
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of choice tasks. In this case, it may be wise to enact an informal 
procedure which allows researchers to customize experiments for 
each subject in order to find a set of key attributes among a large 
number of candidate attributes for each subject; indeed such 
methods are not uncommon in commercial conjoint programs, 
particularly those using adaptive methods. The methodology 
presented in this paper may serve as a starting point for additional 
future research along those lines.
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Appendix: Estimation Algorithm

The MCMC sampler discussed here is designed to estimate subject-
specific configurations of relevant explanatory variables. Let ys = (ys1, 
…, ysTh), y = (y1, …, yS)′; q = (q1, …, qS); β0 = (β10, …, βS0)′; β(q) = (β1

(ks)′, 
…, βS

(kS)′)′; us = (us1, …, usTS)′, u = {us}
S
s=1; xs

(kS) = {xst
(kS)}TS

t=1, x
(q) = {xs

(kS)}Ss=1;  
Sl = {s | Rl ∈ xs

(kS), s = 1, …, S}, l = 1, …, K. Then, the full posterior 
distribution is
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 is the sample space of 
ust given the mapping in ((5)), IJ–1 is a (J – 1) × (J – 1) identity matrix, 
and Ia is the usual indicator function for the event a. To evaluate 
((16)), we use the Markov chain Monte Carlo method by sampling all 
unknown quantities in a sequence as follows:

 
1. �Sampling from p(u | β0, β

(q), x(q), q, μ0, σ0
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   �which can be sampled by the multivariate slice sampling  
   method (Neal 2003).
2. �Sampling from q qp u x q y( ) ( ) 2
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5. Sampling from q qp u x q y( ) ( ) 2
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   The #(D) denotes the size of a set D and the subscript is (is = 1, …, 
   ks) indicates the column of xs

(kS) corresponding to Rl.
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Under the reversible jump MCMC method, four possible 
transitions are allowed: birth, death, replacement and update 
steps. Thus, the set of possible moves is m ∈ {U, W, 0, 1, 2, …}, 
where U means an update of regression coefficient βs

(kS), W means 
a random replacement of an explanatory variable, and n = 0, 1, 2, 
… refers to increasing the number of explanatory variables from 
qs = c to qs = c + 1 or decreasing from qs = c + 1 to qh = c.  

As mentioned at  the prior distribution for qs is a Poisson 
distribution with mean λ, Po(λ). Since the parameter of the Poisson, λ, 
is a researcher’s prior belief on qs, it is important to set λ so that all 
values of qs ≤ Q have reasonably large prior probabilities. Then, the 
probabilities for these four possible transitions are: 
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 for a death move; 

(3) q q qs s sc
1= (1 )ψ ς τ− −  for an update move, and; 

(4) q q q qs s s s
= 1υ ς τ ψ− − −  for a replacement move, 

where the constant a should be as large as possible subject to ςqs
 + 

τqs
 ≤ 0.9 for all qs = 0, 1, …, Q to ensure ςqs

p(qs) = τqs+1p(qs + 1). Note 
that a should fall in an interval [0, 0.5] since if a > 0.5, then the 
sum of the probabilities ςqh

 and τqh
 could be greater than 1 for some 
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values of qs. Since the value of qs should be in an interval [0, Q], set 
ς0 = 1 and ςQ = υQ = 0. In addition, c was set to 0.5. However, any 
values ranging from 0 to 1 are valid for c. 

After choosing one of these four moves given the four transition 
probabilities, move to the next step as follows:

(a) �Update move: sample βh
(kS) from a multivariate normal 

distribution with mean vector μ(kS) = Tk khs s
st stt

x u( ) ( )1
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− −Σ Σ + ∑ , where the prior mean vector μβ 

and diagonal covariance matrix Σβ are constructed from μ and 
Σ so that an n-th element of μβ, n,  = μl and n (n, n) element of Σβ, 

nn l
2

, =β σΣ  when the n-th column of xst
(kS) corresponds to the l-th 

element in R, where n = 1, …, ks and l = 1, …, K.
(b) Other moves

First, given explanatory variables currently present, gs
(qS), 

generate gs
(qS+i ), i = –1, 0, 1, as follows:

i. �Birth step: add one more explanatory variable ab by 
uniformly choosing one of the Q – qs candidates, ( )cqs

sA g ( ) ,∩
ii. �Death step: delete an explanatory variable, ad, by uniformly 

choosing one of qs currently present variables from gs
(qS),

iii. �Replacement step: replace one of the currently present qs 
variables, ad, uniformed chosen from gs

(qS), with a currently 
non-present variable, ab, uniformly chosen from ( )cqs

sA g ( ) ,∩
 
Then, given gs
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–

s is the new dimension 
given newly genertaed explanatory variable set. Next, propose βh
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computing acceptance probability:
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