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Abstract

In a linear programming (LP), market demand is assumed to be
constant, but the demand is often random variable which is to be
realized as time lapses. We refined the previous work of Higle and
Wallace (2003) who studied an LP depending on the timing of market
demand realization. The motivation of this research is the need to
consider three operational strategies used for dealing with demand
uncertainty. We improved the previous work in the following aspects.
These are the strategy of speed, the strategy of forecasting, and the
strategy of outsourcing. Nine distinct LP examples are studied
depending on the velocity of supply chain process and the type of
operations strategy.

Keywords: linear programming, stochastic demand, quick response,
forecasting, outsourcing

INTRODUCTION

Sensitivity analysis is often used for dealing with the variability
in a linear programming (LP). But there is much stochastic
uncertainty which sensitivity analysis can not deal with. One of
such typical cases is the LP with stochastic demand. In an LP we
usually take the market demand for our products as a constant
and use it as a right hand side for a constraint. However the
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demand is often a random variable which is to be realized as
time lapses. Higle and Wallace (2003) dealt with three cases in
an LP depending on the timing of the market demand realization.
In this paper, we analyze a similar LP problem and study three
operations strategies. In Sen and Higle (1999), more complete
introduction on stochastic linear programming was given and
outsourcing was partially mentioned.

Compared with Higle and Wallace (2003), this paper has
several distinctions. First, we categorize the constraints into two
sets: short-term and long-term constraints. Short-term
constraints are the ones which are affected by the decision
making itself in an LP. And long-term constraints are the ones
which the decision maker should take as given for modeling
purpose. According to our definition, all the constraints in Higle
and Wallace (2003) are shot-term constraints. Second, Higle and
Wallace (2003) develop three cases of LP depending on the timing
of the demand realization. But we offer the interpretation of the
timing in a more proactive perspective. That is, we introduce the
speed in operations strategy in dealing with the three cases. The
speediest producer could get the parts and produce the goods
after watching the realized market demand. The second speediest
producer could manufacture the products after buying the
required parts and watching the market demand. This would be
the case such as overseas sourcing where the lead-time for parts
is fairly long. The least speedy producer should source the parts
and manufacture the goods before knowing the actual market
demand. We can interpret the three cases in Higle and Wallace
(2003) depending on the lead-times of sourcing and
manufacturing. Third, we introduce the operations strategy of
demand forecasting. By using a forecasting, we can refine the
prior probability on the market demand and improve our
decision making output. Fourth, we deal with the operations
strategy of outsourcing. We consider the option of outsourcing
which relaxes a long-term constraint. Therefore, in analyzing an
LP with stochastic demand, we deal with the three operational
strategies (quick response, forecasting, and outsourcing) which
are considered to be important in production and operations
management area. 
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SAMPLE LINEAR PROGRAM

In this paper we introduce a sample linear program for
comparison purpose. Firm S manufactures two kinds of products
(i = 1, 2), and the market prices are $10 and $20 respectively. We
can think of product i = 2 as high-end goods and i = 1 as
economy version of 2. The market demand is assumed to be
stochastic depending on the market condition (j = 1, 2, 3), and
the prior probability distribution of the market condition is as
follows:

Firm S needs two kinds of resources in manufacturing the
goods: parts and machines. Parts can be procured without limit
from the market at $4/unit. Available machine hours are
assumed to be fixed since machines are capital assets. These two
resources define the constraints for firm S. The constraint for the
parts is a short-term constraint, and the machine time
availability offers a long-term constraint. Denoting r1 and mi as
the amount of parts procured and quantity of product i
manufactured respectively, we have the following two
constraints:

m1 + 2m2 ≤ r1

3m1 + 4m2 ≤ 120

We should note that the first constraint is a short-term
constraint and the second one is a long-term constraint. We
denote si and Di (random variable) as the sales amount and
demand of product i, and then the optimization problem can be
described as follows.
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Table 1. 

j 1 2 3

{D1, D2} (20,10) (25,20) (30,28)
P(j) .3 .5 .2



Max{10s1 + 10s2 – 4r1}

s.t.
m1 + 2m2 ≤ r1

3m1 + 4m2 ≤ 120
s1 ≤ m1

s1 ≤ D1

s2 ≤ m2

s2 ≤ D2

Three stages in the supply chain for firm S are ‘parts
procurement manufacturing sales’. As in Higle and Wallace
(2003), we can consider three cases of this problem depending on
when {Di} are realized and known to firm S. Case 1 (after
manufacturing) is the one where firm S should procure the parts
and manufacture the goods before knowing the realized demand.
Case 2 (between procurement and manufacturing) is the one
where the firm should procure the parts first but can
manufacture the goods after watching the realized demand. Case
3 (before procurement) is the one where the firm can procure the
parts and manufacture the goods after getting the realized
demand information. Firm S is assumed to be risk-neutral, and
thus it considers the expected value in maximizing its profit. We
now deal with each of the operations strategy for the three cases.

STRATEGY OF VELOCITY

Case 1

In this case the decision variable set is to be {sij, mi, r1}, and we
should note that the decision variables of {r1, m1, m2} ought to be
defined independent of market condition j.

The optimal objective function value is $270 and the optimal
solutions are

s11 = 20, s12 = 20, s13 = 20, s21 = 10, s22 = 15, s23 = 15, m1 =
20, m2 = 15, r1 = 50.
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Case 2

In this case we should decide the procurement of parts before
the demand realization and can manufacture and sell products
afterwards. Thus the decision variables are {mij, sij, r1}. We note
that the manufacturing and selling amount can depend on the
market condition of j. Expected value of the objective function in
our example becomes

z2 = .3(10s11 + 20s21) + .5(10s12 + 20s22) + .2(10s13 + 20s23)
– 4r1.

The optimal objective function value is $280 and the optimal
solutions are 

s11 = 20, s12 = 13.33, s13 = 0, s21 = 10, s22 = 20, s23 = 26.67, 
m11 = 20, m12 = 13.33, m13 = 0, m21 = 15, m22 = 20, m23

= 26.67, m1 = 53.33.

In interpreting the optimal solution of case 2, we should note
that only four variables of {s1, s2j, m1j, m2j} from {sij, mij} are
implemented according to the ex-post market condition j.

Case 3

Here we can solve three separate LPs depending on the market
condition j. For j = 1 as an example, we substitute D1 = 20, D2 =
10 in the optimization model and solve the corresponding LP.
The optimal objective function value and the optimal solutions
are π(1) = 240, s1 = 20, s2 – m1 = 20, m2 = 10, r1 = 40.

Likewise we can derive the optimal objective function values for
j = 2 and j = 3 as π(2) = 320, π(3) = 352. Thus the expected value
of the objective functions in case 3 is π3 = P(j = 1)π(1) + P(j = 2)π(2)
+ P(j = 3)π(3) = .3*240 + .5*320 + .2*352 = 302.4.

In summary, we get the following table of the optimal objective
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Table 2. 

Speed Case 1 Case 2 Case 3

Base 270 280 302.4



function values. We can see that the values increase as we go
from left to right as expected. This is because the firm has faster
lead-time in procurement and manufacturing as it goes to the
right. The difference in values represents the value of faster lead-
time in production process.

STRATEGY OF FORECASTING

In this section, we consider the option of using a marketing
research firm which offers complementary demand forecasts. The
estimate information on the market condition offered by the
research firm is denoted as e. Analysis of the historical data
reveals the conditional probability of P(e|j) as follows.

Using the Bayes’ theorem with the conditional probability of
P(e|j) and the prior probability of P(j), we can derive the refined
probability of P(e|j). For example,

We can thus construct the table for P(e|j) as follows:
In deriving this probability, we also get the following

P j e
P j e

P e
P e j P j

P e j P j
j

( | )
( , )

( )
( , ) ( )

( | ) ( )

. * .
. * . . * . . * . .

= = =
= =

=
=

= = =
=

=
+ +

=

∑
1 1

1 1
1

1 1 1
1

8 3
8 3 1 5 1 2

24
31
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Table 4.

j e 1 2 3

1 24/31 5/31 2/31
2 3/45 40/45 2/45
3 3/24 5/24 16/24

Table 3.

j e 1 2 3

1 .8 .1 .1
2 .1 .8 .1
3 .1 .1 .8



probability of P(e).
For case 3, we do not need to use the research firm since firm

S has the perfect information on demand before solving an LP.
However for cases 1 and 2, firm S can refine the prior probability
on demand and improve the LP formulation using the estimate e
from the research firm.

Case 1

In this case, we should solve an LP for each value of e. For an
example, the expected value of the objective function for e = 2 is

As an example, the LP for e = 2 gives us the optimal objective
function value and the optimal solutions as follows.

π(e = 2) = 306.67, s11 = 13.33, s12 = 13.33, s13 = 13.33, s21 = 10,
s22 = 20. s23 = 20, m1 = 13.33, m2 = 20, r1 = 53.3

Depending on the estimate e from the research firm, we should
construct and solve the corresponding LP. The optimal objective
function values for each e are π(e = 1) = 240, π = 306.67, π(e = 3)
= 295. Thus the expected value of the optimal objective function
is

P e k e k
k

( ) ( ) . * . * . . * .= = = + + =
=

∑ π
1

3

31 240 45 306 67 24 295 283

z e s s s s

s s r

( ) ( ) ( )

            ( ) – .

= = + + +

+ +

2 3
45 10 20 40

45 10 20

2
45 10 20 4

11 21 12 22

13 23 1
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Table 5. 

e 1 2 3

P(e) .31 .45 .24



Case 2

Following the same logic, we note that an LP for e = 1 in case 2
gives us the optimal objective function value and the optimal
solutions as follows.

π(e = 1) = 240, s11 = 20, s12 = 0, s13 = 0, s21 = 10, s22 = 20. s23 = 20,
m11 = 20, m12 = 0, m13 = 0, m21 = 10, m22 = 20, m23 = 20, r1 = 40.

Likewise, we get π(e = 2) = 311.11. and π(e = 3) = 317.55.
Therefore, the expected value of the optimal objective functions
for case 2 is

Summarizing the expected value of the optimal objective
functions for each case, we get the following table.

STRATEGY OF OUTSOURCING

In this section, we deal with the strategy of outsourcing
machine hours. This means that we convert the long-term
constraint into a short-term constraint. By incorporating the
available machine hours into the decision domain, we can
improve the objective function. In our example, we denote r2 as
the machine hours outsourced and the cost is assumed to be
$0.5/hour. Then the optimization model becomes:

Max{10s1 + 20s2 – 4r1 – 0.5r2}
s.t.
m1 + 2m2 ≤ r1

3m1 + 4m2 ≤ 120 + r2

P e k e k
k

( ) ( ) . * . * . . * . .= = = + + =
=

∑ π
1

3

31 240 45 311 11 24 317 55 290 6
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Table 6. 

Case 1 Case 2 Case 3

Forecasting 283.2 290.6 302.4



s1 ≤ m1

s1 ≤ D1

s2 ≤ m2

s2 ≤ D2

Case 1

The objective function should be the expected value using the
prior probability.

z = .3(10s11 + 20s21) + .5(10s12 + 20s22)
+ .2(10s13 + 20s23) – 4r1 – .5r2.

From the appropriate LP, we get the optimal objective function
value and the optimal solutions as follows.

π = 297.5, s11 = 20, s12 = 25, s13 = 25, s21 = 10, s22 = 20, s23 = 20,
m1 = 25, m2 = 20, r1 = 65, r2 = 35.

Case 2

Likewise, we get the optimal objective function value and the
optimal solutions as follows.

π = 297.5, s11 = 20, s12 = 25, s13 = 9, s21 = 10, s22 = 20, s23 = 28,
m11 = 20, m12 = 25, m13 = 9, m21 = 22.5, m22 = 20, m23 = 28, 
r1 = 65, r2 = 35.

Case 3

When the market condition is j = 1, we use D1 = 20, D2 = 10 in
the LP and get the optimal amount of outsourcing of zero and
π(1) = 240. Likewise when j = 2, r*

2 = 35 and π(2) = 372.5. When j
= 3, r*

2 = 82 and π(3) = 475. Therefore, the expected value of the
optimal objective function is

= π1 = P(j = 1)π(1) + P(j = 2)π(2) + P(j = 3)π(3) =
.3*240 + .5*372.5 + .2*475 = 353.25.

We should note that the objective function values for both case
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1 and 2 are the same. This is not the case in general, and the
demand uncertainty didn’t affect the final objective values by
purchasing the same amount of outsourcing in our specific
example.

CONCLUSION

In this paper we dealt with an LP problem with stochastic
demand. We considered nine distinct LPs depending upon the
velocity of supply chain process and the type of operations
strategy. Taking an LP as an example, we can summarize the
expected value of optimal objective function for each LP as
follows.

The comparison between columns gives us the value of supply
chain velocity. And the comparison between rows represents the
effect of each operations strategy of utilizing forecasting and
outsourcing. Obviously the specific numbers depend on the
example and the parameters of each model. We intended to
convey the idea of manipulating LP depending on the timing of
demand realization and the operations strategy adopted.
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Table 7. 

Case 1 Case 2 Case 3

Outsourcing 297.5 297.5 353.25

Table 8. 

Speed Case 1(C1) Case 2(C2) Case 3(C3) C2 – C1 C3 – C2

Base(R1) 270 280 302.4 10 22.4
Forecasting(R2) 283.2 290.6 302.4 7.4 11.8
Outsourcing(R3) 297.5 297.5 353.25 0 55.75

R2 – R1 13.2 10.6 0
R3 – R1 27.5 17.5 50.85
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