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Abstract

We look at the benefits of using a kind of quasi-random numbers to
obtain more accurate results for a given number of simulation runs. We
explore a sampling method with enhanced independence in multi-
dimensional simulations by combining the ideas of stratified sampling
and Latin Hypercube sampling. We test the new sampling method by
comparing it with traditional stratified sampling and Latin Hypercube
sampling applied to various operations management problems.
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INTRODUCTION

If more than a few random factors such as demands, foreign
exchange rate, or production yield, are involved, problems in
operations management area often may not be solvable with an
analytic approach. In those cases, we often conduct numerical
analysis. Because of general applicability and ease of
implementation, Monte Carlo simulation is often used to analyze
complex operations problems. One can get more accurate results
by letting the simulation run longer. There is the ubiquitous
1/ vn law of statistical variation where n is the number of
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simulation runs (scenarios). That is, to reduce the standard error
of an estimator by a factor of f, one needs to increase in the size
of the experiment, or the number of simulation runs by f2 (Law
and Kelton 2000). Therefore, the amount of computer time
required for a satisfactory accuracy may be embarrassingly long.
There are a variety of “variance reduction” techniques available
to increase the accuracy with a given amount of simulation. We
discuss a general form of these techniques, quasi-random
sampling. “Quasi” random sampling in a broad sense covers all
variance reduction techniques that artificially manipulate the
sampling procedure.

According to Judd (1998), Weyl found that infinite sequences
of non-random points exist, which have a property similar to
random sequences. Such sequences are said to be uniformly
distributed (or equi-distributed) in the number theoretic sense.
The points from these sequences are often called quasi-random
in the narrow sense of the term. Several algorithms such as
described by Haber, Niederreiter, Baker, Halton and Sobol are
also available to generate quasi random numbers (Judd, 1998).

The ex ante uniformity of the samples makes the Monte Carlo
estimate of an integral unbiased. We would like to develop ex
post relatively uniform sequences even with the small number of
scenarios because a small bias in sampling may result in huge
distortion in optimal decision. Although there are well known
equi-distributed sequences due to Wyle, Haber, Niederreiter,
Baker and Sobol, they do not necessarily generate uniformly
distributed samples if the number of scenarios is small and the
dimensions are large. Thus we develop a quasi-random number
generating procedure that is easy to understand and works well
with small samples. This program generates uniform random
real numbers between O and 1. We may generate any desired
distributions by inversion method or other techniques (Ripley
1987).

In this paper, we look at the benefits of stratified Latin
Hypercube sampling, the combination of two traditional variance
reduction techniques: stratified sampling and Latin Hypercube
sampling. First, we look at the various variance reduction
sampling techniques in the next section. Then, we illustrate the
benefit of stratified Latin Hypercube sampling in mean
estimation compared with other variance techniques. Finally, we
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compare the performance of stratified Latin Hypercube with
other sampling methods in several operations management
problems.

METHODS FOR MONTE CARLO SIMULATION

Mathematically, Monte Carlo simulation is concerned with
approximating the value of the integral of a function g( ) over a d
dimensional unit hypercube (Robert and Casella 1999):

u; =1 ug =1

h=E(gW) = [,' o Af, o9, Augddug A du,

Monte Carlo approximates h by

h =

L

gy, Aug)/n

OV E

We restrict our attention to situations where d is known in
advance. In terms of a physical process being simulated, it might
be the behavior of a stock price over d periods. We might: 1)
generate d independent uniform random variables in (0, 1); 2)
these would be transformed into d lognormal random variables
to represent relative stock price changes for each period; 3) if we
are interested in the value of a “Asian option”, the g( ) function
would be the amount by which the average price over the periods
exceeds a strike price. The integral computes the expected value.

Variance reduction methods, including quasi-random
numbers, are concerned with how to judiciously choose the s
samples, {u;, ..., Wgl, so that the estimator has low variance.

We concentrate in particular on a method called Stratified
Latin sampling and show that it tends to have low variance
relative to 1) simple random sampling, 2) number theoretic
quasi-random methods such as Weyl’'s method, 3) antithetic
variates, 4) traditional stratified sampling, 5) importance
sampling, and 6) Latin Hypercube sampling. First we look at the
each sampling method.
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Simple random sampling

Random sampling selects points randomly in the d
dimensional hypercube. Each point is independent of all others.
Despite its inefficiency, simple random sampling without any
variance reduction effort is widely used in research and
commercial software.

Low discrepancy, Weyl sequence sampling

In number theory, the problem of distributing points as
uniformly as possible over a d-dimensional unit cube has been
studied. The uniformity of a point distribution can be measured
by “discrepancy” (Niederreiter 1978). A formal definition of
discrepancy is as follows:

For n points, x;, K, x, in the d-dimensional half-open unit cube
1 =10,1)4, n> 1, and subinterval J of I4, we put D(J;n) = A(:::”]
-V(J), where A(J;n) is the number of Ik, 1 < k < n, with x. 0 J and
V{J) is the volume of J. Then the “discrepancy” A(n) of the points
x1, K, x, is defined by D(n) = Slle| D(J,n) |, where the supremum is
extended over all half-open subintervals J.

The smaller discrepancy, the more uniform the distribution.
Finite point sets in multi dimensional unit cube with a nearly
uniform distribution are called low discrepancy sets. Low
discrepancy points are of interest because of multi dimensional
numerical integration. Thus, the construction of point set with as
small discrepancy as possible is a central issue in quasi Monte
Carlo simulation.

The simplest example of equi-distributed sequence is Weyl
sequence (Judd 1998): x, = nf — [nf], where n =1, 2, ..., for
irrational.

Antithetic variates

We say U; and U, are antithetic if Uy = 1 - U;. Some authors
(e.g., Bratley, Fox and Schrage 1989) use the less restrictive
definition that U; and U, are antithetic if Cou[U;, Us] < O. If g is
monotone, then it generates negative correlation for g(U) and g(1
— U) and reduces variance in estimation. But it does not deal with
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multi dimensional aspects for the problems with multiple
dimensions.

Stratified sampling

Classic examples of stratification arise in the design of sample
surveys (Raghavarao 1971). Stratified sampling is applicable to
multiple dimensions. By partitioning the d-dimensional unit
hypercube into [ equal-width intervals in each d dimension, we
have [4 equal volume mini-hypercubes or strata, each having
length 1/l in each dimension. Stratified sampling chooses one
point randomly from each stratum or mini-hypercube.

Importance sampling

Importance sampling is related to weighted stratified sampling.
Suppose we wish to estimate

h=E(g(w) = 5 glul A)P(A,)

where the events A; are generated during a simulation and
g(ulA) is the expected value given that A; occurs. In many
systems there are some I for which g(ulA) is large while
simultaneously P(A) is small. For example, for barrier options, it
may be a rare event that the underlying stock price is
exceptionally high or low and passes the barrier. Crossing a
barrier, however, may have such a huge impact on payoff for the
option holder that when it does occur it dominates all other
payoffs. Similar examples can be found in inventory management
with huge shortage penalties.

If we simulate in a standard way, the required time to obtain a
reasonable estimate of h may be prohibitive. An alternative is to
sample from a different distribution so that we can sample rare
events more frequently, applying a correction factor to
compensate. That is, suppose we simulate a model with known
nonzero cdf V to u rather than correct uniform cdf U before
inverse transform. Then if we let ¢ = g(—[‘}),
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is unbiased estimator of h.
This is weighted mean of g(u) which weights inversely
proportional to the “selection factor” U/V. Then

-~ o1 9 1 gU 9
Var(h,) = EI[go(u) -h]*dVv(u) _HI[T -h]"dV(u)
which can be small when 9u is nearly constant.

For many distributions, such as the normal distribution, much
of the probability is concentrated around the mean, thus, many
of the U;s around the median will transform into essentially the
same demand. A simple implementation of importance sampling,
if we have 9 scenarios for a two-dimensional problem, is to
partition the uniform unit hypercube with different length
according to the size of variance. Since we expect higher variance
in the tail parts of normal distribution, we have more samples in
the extreme values in the uniform distribution before the inverse
transformation.

Example: importance sampling with univariate normal distribution

If the output is a Normal distribution and we are allowed n
samples, n > 2, in one dimension one of the fundamental
questions on importance sampling may be how should the
interval (0, 1) be partitioned so that the weighted estimator has
minimum variance (and of course is unbiased). For simplicity, let
a random variable x follow Normal distribution with mean zero
and variance one.

2 2

Let gx) = ——exp(-=), @(x) = [ —— exp(~)dx
Jom 2 *Jem 2
and y(x)= Lx exp(—ﬁ).
N2 2

Sample size 3. Suppose we have partitioning points t; < t, and
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three samples (x; € t; < X3 £ t, < x3). Then the mean and variance
for the first interval are

2

1
EGa) =ty = g [lx exp(~"-)dx
1
R z)tlg LD L -y
ot)f ver 0 2| _H o) van T 2°f
_ oty
o(t;)
2
Var(x,;) :af:(p(t )J’f; 2 ?exp(—j)dx—mlz.
1
a 2 |h 2 0
1 1 1
= - R b - |
#0)] T B Bt
0t
H @(e)d
1 0 1 ¢2 00 at)?
= S >
o) Jan PR TP T g )

) _Ddt)
o(t,) Hoe)H

Similarly, the mean and variance for the second interval are

_ q’(tz ) - (Atl)
@(ty) - P(t,)

V(L) - Vit,) O dity)— ¢ty) T
D(ty) - @(t,) Oolty)- ot)H

E(x5)=: iy =

Var(x,) =102 =1-

Finally, the mean and variance for the third interval are

@lty)

Bbea) =1 =170 0)
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2 _ Vi) O db) ’
Var(xs) =: 03 _1+1—¢>(t2] El-‘p(tz)H'

Define: P; = probability that a random sample would fall in the
Ie-th interval.

That is, P; = ®(t;), Py = ®(ty) — @(t;) and P3 = 1 — P(ty)

Let our estimator of the sample mean be X = P;x; + Poxy + Paxs.
Then

3
BIR) = 3 P = Ol )m, +(@(ty) =l )my +1 -ty )my =0

Therefore this sampling is unbiased (Casella and Berger 1990).
The variance of the above estimator is

3
Var(x) = z Pizai2
=1

= P2 +PZ +P? -Pyy(t)) —Pylylty) —At;)} +P5 Aty)
—(@(t))? ~(dty) — t))* ~( @ty))?
= O(t))? +H{D(ty) - B(t))}* +H1 - dty))?
- ®(t))y(t)) —{®(ty) — Dt N y(ty) — Ut;))
+[1=D(ty)ly(ty) ~(dlt))? ~(dity) = ¢t)) ~( &)
= O(t))? +H{B(ty) - B(t))}* +H1 - dty))?
—20(t) )y (ty) —2®(ty) y(ty) + @ty Uty) + Plty) Ut,)
+ylts) = (1)) ~(dty) - @t,))° ~( @t5))°

Even though we do not have analytic solution for t; to
minimize Var(x), we may find a solution numerically using
MATLAB. When t; = -.5689 (equivalently, u; = .2847 in (0,1)
sampling interval), Var(X;,,) is minimized with its value of .0609
with Stdev(X;,,,) = .24678.

Typical random sampling gives Var(x) = .3333 and Stdev(x) =
.57735. If we apply stratified sampling with equal length
partition (.3333 and .6667 in (0,1) sampling interval), the value
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of Var(X ;) is .0689 and Stdev(x) = .26249.

_ _ 1 n
Remark: Var(X g, ) = Var(xRandom)——2 Z(,ui —u)2
n< <

02 =7 (x -+ ) @lx)dx

ol = ) @lydoe + 7 (1 = 1) x)de

Plo? +(y; -w?)

1
N =

i=1

_ 1n 2 n o [
Thus Var(Xgangom) = —0Y Pio; + 3 Pi(u; —@)* 0
n = i=1 O
1 _
If P, :;, Var(X gandom ) =

Thus, if the output is Normal distributed, then importance
sampling improves the precisions relative to simple equal

partition stratified sampling by about 6% (- 2624924678
.26249

Sample size n > 4. When we extend the above approach to n
sample case, we have similar results.

Let samples from each interval are x; < x5 < A < x,, and
partition points are t; < tp < A < ;.

The mean and variance expression of the first interval are the
same as the three sample case.

The mean and variance of the k-th interval are

ot ) - dtye,)
‘D(tk ) - (D(tk-l)

Y ) - ylte)  Odt )= dtey) uj
Dt ) - Blt,,) Dot ) - Mt )

E(x;) =y =

Var(x,) =107 =1

The mean and variance of the last (n-th) interval are
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qo(tn—l)

Ela) =t =00 )

y(tn—l) _D (Atn—l) D2

- g2 =
Var(x,) =:0; 1+1—¢(tn—1) El_d)(tn—l)H.

Define P; be probability that a random sample would fall in the
Je-th interval.

n
If our estimator of sample mean is x = y P,x;. then
{=1

n
E(X) =Y Py, =0
i=1

Again, the estimator of the mean of n samples is unbiased.
Now the variance of the estimator is

var(x) = S P?c?

M=

1

= O(t)) +H{D(ty) - D(t;))% + A+{1 -D(t,_,))>
- (D(t1 )y(t1 ) —{CD[t2) - CD(tl )}{ y(tz ) - y(t1 )}
-A +{1 —d’(tn_l)})/(tn_l)

—(@lt,))? = (elty) = dt))? = A =( ot ).

Although we may not have analytic solution for ¢, t,, K, t,1 to
minimize Var{x), we may find a good approximation by numerical
search. The results for small number of samples are summarized
in the table 1. It appears that as the partition increases, the
precision increases more than proportionately.

The above analysis is for only one dimension. If our system is

Table 1. Partition Points for Importance Sampling

n Partition points of (0,1): Var Stdev Var Stdev Var  Stdev

(D(ti] (izmp) &Unp) Rstrat) (Estrat) (irandom) Rrandom)
3 .2847, .7153 .0609 .2468 .0689 .2625 .3333 .5773
4 .1838, .5, .8162 .0273 .1652 .0349 .1868 .2500 .5000

5 .1288, .3657, .6343, .8712 .0145 .1204 .0206 .1435 .2000 .4472
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multidimensional, the above results still apply if the random
variables in each dimension are independent Normal random
variables and output measure is a linear function of the
variables.

Latin hypercube sampling

Stratified sampling becomes less practical if the dimension d is
large, because stratified sampling requires ¢ samples. For
example, if lis 2 (which is the smallest effective number), and d
is 30, we need more than one billion samples. Latin Hypercube
(LH) sampling can be used for any sample size specified in
advance. LH is a one dimensional version of stratified sampling.

The LH method generates a sample by drawing independently
between dimensions, but sampling without replacement from
each of the [ subintervals within a dimension. Roughly speaking,
stratified sampling approximates the joint distribution of g( ) as
closely as possible given the sample size, whereas LH sampling
approximates the marginal distributions of g( ) as closely as
possible.

According to Mckay, Beckman and Conover (1979), LH
sampling is very good when the output is dominated by only a
few dimensions. Stein (1985) tests the performance of Latin
Hypercube with many random variables. To the best of our
knowledge, LH sampling is the only variance reduction sampling
method that has been in a commercial Monte Carlo software
package for a number of years. The @RISK package from
Palisade offers LH sampling as an option.

STRATIFIED LATIN HYPERCUBE SAMPLING

All the sampling methods in the previous section do not
guarantee ex post uniformity if the sample size (simulation runs
or the number of scenarios) is small. Stratified Latin Hypercube
(SLH) sampling is best motivated by looking at the figure 1.
Figure 1 illustrates the worst case of each sampling method with
4 samples in 2 dimensions. Typical random sampling could
generate points that are concentrated together by chance.
Compared with a typical random number generator, we can see
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Figure 1. Worst case from each sampling (4 scenarios in 2 dimensions)

that points generated by LH sampling are more equally spaced
even in the worst case. But samples may have strong positive
correlation between two dimensions. Stratified sampling is better
in terms of independence. For a given simulation, however, it
need not generate samples that have equal marginal
distributions.

We combine the idea of stratified sampling and Latin
Hypercube sampling: keep marginal uniformity as in LH
sampling and enhance the independence by sectioning as n-
dimensional stratified sampling. SLH samples have more
accurate marginal distributions than traditional stratified
samples and have higher independence among dimensions than
LH sampling. SLH sampling has been introduced as an option in
the LINGO modeling system from LINDO systems (Schrage
1998a).

Variance of stratified latin hypercube

Let g; be the result of the ith sample or scenario, for i = 1, A, n,
that is,
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gi = glug, N, ug).

The variance of our estimator of expected value will be v = Var(igi /n).
For all the methods we consider, except importance sampling,

the g; are identically (though not independently) distributed, so
that V =Var(gy)/n+ y Covlg; ,gj]/nz =Var(g,)/n +2 5 Covl(g, .gj]/n2
i#j i>j *

For simple random sampling, 2°"9-9)=9 Each g, is a draw
from one of the 4 small cells of hypercubes in the d-dimension
unit hypercube. For the quasi-random methods we want to argue
that cells that are close together will not appear in the same
sample. If we can argue that cells that are close are more
positively correlated than two randomly selected cells, then we
can argue that the summation over the remaining cells must
result in 2C°"9::9,)<0

, . ~ 1
For simple random sampling: Var(h r) =—Var(h)
n
R R 1 n R R
Var(hg) = Var(hg) -—— Z(ui —,u)2. Thus Var(hg) <Var(hg).
n< =1
From McKay, Beckman and Conover (1979),

Var(ﬁLH) = Var(FLR )+ n

S (1 - W 1)

n nd (Tl - l)d region
n-1
n

Equivalently, var(h )= Var(fl RrR)T

Cov(gi,gj).

1
They showed that for monotone functions since Py A

region

(0, - <0, Var(hyy) sVar(hy). Stein (1987) also showed for any
function Coul(g;, gj) < 0 asymptotically if the second moment of g
is finite.

It is true that crude Monte Carlo has an advantage with regard
to simple estimation of the variance of the estimator. With
correlated schemes such SLH one has two options: either
estimate the covariances (usually hard), or do several
replications. The latter option, of course, implies extra
computational effort. A third alternative may be to claim that the
naive estimate of the variance of SLH based estimator is
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conservative. The argument might go something like this:

1) For a wide range of functions, e.g. continuous and
monotonic we should be able to argue that the SLH estimator
has lower variance than the simple random draws estimator
(unfortunately, we do not know what it is).

2) Because the SLH samples are negatively correlated, the
simple sample variance, disregarding the covariance terms
(which we expect to be negative in SLH) will be higher than the
sample variance from SLH sampling.

3) Putting (1) and (2) together, we get a conservative estimate of
the variance of the SLH-based estimator.

We compare the performance of SLH with other sampling
methods in several operations management problems in practical
sense in the later section.

Stratified latin hypercube and importance sampling

We also introduce the combination of stratified Latin
Hypercube sampling and importance sampling (lower right of
figure 2). We split a unit interval (0, 1) to three unequal intervals
(0, .25), (.25, .75) and (.75, 1). In comparison, we split a unit
interval to equal size in stratified sampling. We test the

L4 ° ° ° ° °
° ° ° [ ] [ ] °
o ° o o °
[ ]
Stratified Importance
. T |
° o/
U .
®
L]
(]
(] ®
[ ] [ ]
[ ] [ ]
° (]
SLH Importance + SLH

Figure 2. Stratified sampling vs. importance sampling
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performance of the combination of stratified Latin Hypercube
sampling and importance sampling with Petroleum Reserve
Estimation problem in the later section. The result is
summarized in the table 4. While the stratified Latin Hypercube
sampling has the lowest variance of simulation for the petroleum
reserve problem, the combination of importance sampling and
stratified Latin Hypercube has the lowest bias in objective value.

APPLICATION TO OPERATIONS PROBLEMS

If an analytic solution is available, we can compare the
performance of different sampling methods directly with the
correct answer. If an analytic solution is not available, we can
still compare the performance by: (1) standard error of
simulations, given a number of scenarios or (2) convergence rate
as we increase the number of scenarios.

Stochastic PERT

The PERT network example in this paper is based on Schrage
(1998a).

We assume a triangular distribution for the time of each task.
The minimum for each task is half of the mode and the
maximum is double of the mode. The modes of triangular
distribution for design, forecast, survey, price, schedule, costout
and train are 10, 14, 3, 3, 7, 4, and 10, respectively.

@

Figure 3. PERT network
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Table 2. Simulation comparison for stochastic PERT (r = 1000, n =
64,d=17)

Random  Weyl Antithetic Stratified LH SLH

Mean 52.5296 52.2809 52.4972 52.4881 52.4998 52.5002
Std Error 0.5775 1.2354 0.0777 0.3455 0.0086 0.0080

This PERT network can be written as the following functional
form:

Time = Design + max (max (Forecast, Survey) + Price, Forecast
+ Schedule + Costout) + Train.

Thus, the function to evaluate is a combination of sum and
max functions. Since Latin Hypercube sampling and Stratified
Latin Hypercube sampling perform well in sum and max
functions, we may expect LH and SLH sampling to perform well
for PERT. The result is summarized in the table 2. If expected
activity times are used, the project length is 45. Thus, stochastic
variation increased the expected project length by about 7 time
units.

Petroleum reserve estimation

Murtha (2000) introduces the use of Monte Carlo simulation to
the estimation of volumetric reserve, N = AhR, where A is area (in
acre), h is height (in feet) and, R is STB per acre-feet. Each
dimension follows a triangle distribution: A ~ triangle (1000,
2000, 4000), h ~ triangle (20, 50, 100), and R ~ triangle (80, 120,
200). The dimensions are assumed to be independent each other.
Murtha conducted one simulation with 500 iterations (scenarios)
using @RISK software with Latin Hypercube methods. We
conducted 1,000 simulations with 8, 64 and 512 scenarios to
compare sampling methods. The first three moments (mean,
variance and skewness) of the distribution of the petroleum
reserve may be of interest. Higher mean (expectation) and lower
variance (risk) are preferred. Positive skewness may be preferred
to avoid downside risk.

The comparison results with 64 scenarios are summarized in
the table 3 where the numbers are scaled down by 10%. SLH
sampling outperforms the other sampling methods in the
petroleum reserve estimation problem.
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Table 3. Petroleum reserve estimation (r = 1000, n = 64, d = 3)

Random  Weyl Antithetic Stratified LH SLH

Mean 17.6422 17.3686 17.6229 17.6367 17.6166 17.6304
Std Error 1.5282 1.2444 0.5900 0.6643 0.3904 0.2333
Variance 64.0433 60.0588 64.6739 65.1951 64.8850 65.5845

Std 24.1684 18.1935 26.5705 15.1853 19.1346 13.2203
(Variance)

Skewness 0.8157 0.9481 0.7930 0.8816 0.8366 0.8960
Std 0.4915 0.5169 0.3861 0.4250 0.4682 0.4470
(Skewness)

Table 4. Stratified sampling vs. importance sampling for mean
estimation petroleum reserve estimation (r = 5000, n = 27, d = 3)

Stratified Importance SLH Imp+SLH
Mean 17.6169 17.6299 17.6244 17.6204
Std Error 0.6403 0.7339 0.2352 0.3965

Stratified sampling has better performance than Latin
Hypercube sampling with 512 scenarios while Latin Hypercube
sampling is better with 64 scenarios (or with just 8 scenarios).
We may guess that independence is more important with a high
number of scenarios.

Asian option pricing

A frequent use of simulation is pricing complex options
(Glasserman, Heidelberger, and Shahabuddin 1999). Although
option pricing is considered a finance application, evaluating real
options is a fast growing area in operations management area.
Among options with no closed form solution, the Asian option is
one of the most popular. An Asian option gives the holder the
right to buy (or sell) an underlying asset at a price equal to the
average of the prices over the lifetime of the contract. This
minimizes an option holder’s exposure to erratic prices on a
single day. Other popular options not having closed form
solutions are barrier, spread, basket and lookback options such
as max/min (Campbell, Lo and MacLinlay 1997).

Generally, there is no analytic solution for pricing path
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Table 5. Simulation comparison for asian option pricing (r = 200, n
= 1024, d = 10)

Random  Weyl Antithetic Stratified LH SLH

Mean 1.8972 1.8807 1.8946 1.8896 1.8902 1.8897
Std Error 0.0811 0.1133 0.0578 0.0554 0.0373 0.0302

dependent options. Even though path-dependent options may be
priced by the dynamic-hedging approach, the resulting partial
differential equations are intractable. A discrete simulation
approach is usually easier to implement.

For a test, we try to price an Asian option with

initial stock price = $100,

risk free interest rate = 5%,

and maturity = 10 days.

Stock prices are assumed to follow lognormal distribution with
constant drift and volatility of O and 1, respectively. Stock prices
are averaged daily and geometrically. We conducted 200
simulations with 1024 scenarios. The result shows SLH method
has lower standard error for the estimation.

CONCLUSION AND DISCUSSION

Quasi Monte Carlo simulation can be used to analyze many
complex problems in operations management as well as in other
disciplines such as finance. Problems that are too complicated to
have a closed form solution can be solved with a relatively small
number of scenarios and a high accuracy.

Stratified Latin Hypercube sampling combines Latin square
sampling with multidimensional stratified sampling. We compare
this approach with other well-known variance reduction methods
when applied to a variety of simulation problems in the
operations management area, ranging from stochastic PERT
networks, petroleum reserve evaluation, and option pricing. For
all of the above operations problems, we illustrated that for
practical purposes, Stratified Latin Hypercube sampling is never
worse than other methods, and in many applications it is
significantly better.

We set the number of scenarios to 14 for some [ for the
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performance comparison in this paper. What if n # 19? For
example, if the number of scenarios is too small to cover all
random variables in the model even with the lowest level of
partitioning (n < 29, it is not clear how to design sampling to
enhance independence and rate of convergence. Furthermore, if
we have more than 29 scenarios in the simulation, it is difficult
to judge whether we had better disregard additional simulation
capacity or not. Higher simulation capacity or more samples are
not always desirable. On the contrary, sometimes more samples
can produce worse simulation accuracy. For a simple example,
when we analyze sum function with antithetic variates, if the
number of samples is even, the simulation will generate an
accurate result with zero standard error. But if we add one more
sample, thus the number of samples becomes odd, then
additional randomness could generates positive standard error in
the simulation.
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