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Abstract

This paper presents an approach to the optimal fixed experimental
design for pair-wise metric conjoint studies. We first propose a linear
model suitable for metric paired comparison conjoint analysis.
Following Bayesian decision theory, optimal design problems in pair-
wise metric conjoint analysis is then formally defined. Given the formal
definition of the experimental design problems, algorithms for the
identification for the optimal design are developed. The proposed
methodology is applied to a hypothetical conjoint experimental design
problem and major findings are discussed.

(Keywords: Conjoint Analysis, Optimal Experimental Design, Pair-
Wise Metric Comparison, Bayesian Methods)

1. Introduction

Conjoint analysis is one of the most popular market research
tools for the identification of the best combination of attribute
levels for new products or services(cf., Cattin and Wittink 1982).
In conjoint experiments, subjects conduct implicit or explicit
trade-off evaluations among attribute levels. Subjects’ trade-off
evaluations then allow researchers to infer the underlying part-
worths for attribute levels. However, the subjects’ trade-off
evaluations are contingent upon the design of conjoint

*  Assistant Professor of Marketing, MIT-Sloan School of Management,
MIT(jgkim@mit.edu).



66 Seoul Journal of Business

experiment(e.g., configuration of attribute levels for trade-off
evaluations). Consequently, the design of conjoint experiment,
devised by researchers, may affect researchers’ statistical
inferences on the subjects’ part-worths. Furthermore, when the
total number of possible combination of attribute levels is huge,
it is practically impossible to provide subjects with all possible
combination of attributes levels. Therefore, the optimal
experiment design has been one of critical issues in conjoint
studies.

The purpose of optimal conjoint experimental design is to
improve statistical inferences on subjects’ part-worths of
attributes levels by the optimal selection of values of experiment
design parameters given some constraints on available
resources. Examples of resource constraints include the budget
of a given conjoint study, the maximum number of trade-off
evaluation tasks for an average subject, the minimum/
maximum sample size, and the maximum number of varying
attribute levels for trade-off evaluations.

In previous literature, several studies have attempted to
develop procedures for the optimal experiment design for choice-
based conjoint studies(Arora and Huber 2001; Huber and
Zwerina 1996; Kuhfeld et al. 1994; Kanninen 2002; Sandor and
Wedel 2001). These studies typically focused on the optimal
design matrix of attribute levels and proposed several search
procedures such as shifting(Bunch et al. 1994), swapping
(Huber and Zwerina 1996), LMN(Louviere 1988), relabeling
(Huber and Zwerina 1996) and cycling(Sandor and Wedel 2001).
These search procedures were often limited to design matrices
satisfying certain conditions such as minimal overlap, balance
and/or orthogonality(cf., Sandor and Wedel 2001). The optimal
design matrix of attribute levels were then determined by
examining criterion functions across candidate design matrices
generated by the search procedures. One of the typical criterion
functions used by these studies was D-optimal criterion(cf.,
Kanninnen 2002).

Even though these studies attempted to develop procedures
for the optimal design for choice-based conjoint experiments,
many other types of conjoint experiments exist. For example,
subjects’ preferences can be measured by a variety of scales
such as rank orders, preference scores, and discrete choices(cf.,
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Figure 1. Example of pair-wise metric comparison tasks

Wittink and Catttin 1989). Previous studies on the optimal
conjoint experiment design have largely focused on choice-based
conjoint studies and we are not aware of any other studies on
the optimal design for pair-wise metric conjoint experiments.

In pair-wise metric conjoint studies, subjects are asked to
determine relative preference for pairs of product profiles in a
sequence(see Figure 1 as an example). The relative preference is
typically measured by interval scales(e.g., semantic differential
scales) or continuous scales(e.g., thermometer scales).

The pair-wise metric evaluation tasks are among the most
widely used and applied data-collection formats for conjoint
studies(Green et al. 2001). For example, in adaptive conjoint
analysis(Green et al. 1981; Johnson 1987), researchers use a
hybrid technique of self-explication and metric paired
comparison tasks, with each subject performing a self-
explication task and then evaluating pairs of partial product
profiles on metric scales. The metric paired comparison tasks
are also common in computer-aided interviewing(Toubia et al.
2003). In addition, the metric measures obtained from paired
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comparison have been among the most reliable scales to
measure preferences(Hauser and Shugan 1980; Leigh et al.
1984).

We focus on the metric paired comparison conjoint analysis. In
particular, we aim to develop a procedure for the optimal
experimental design for pair-wise metric conjoint experiments.
The design problem considered in this study is the optimal
design of the sets of paired comparison tasks for all subjects. In
adaptive conjoint studies, observed relative preference scores for
pairs of product profiles are used to infer unknown part-worths
after incorporating self-explication responses. Therefore, a
critical but unsolved issue in adaptive conjoint analysis is the
identification of the optimal pair of product profiles for the next
comparison task for each subject given his/her responses on
both self-explication and preceding pair-wise comparison tasks,
which is a customized sequential optimal design problem. We
have worked on this issue and hope to report a developed
procedure in the near future.

To develop a procedure for the optimal fixed design for metric-
paired comparison conjoint studies, we first propose a linear
model suitable for metric-paired comparison conjoint analysis.
Following Bayesian decision theory, we then formally define the
optimal design problem in pair-wise metric conjoint analysis.
Given the formal definition of the experimental design problems,
algorithms for the identification for the optimal design are
developed. The proposed methodology is applied to a
hypothetical conjoint experimental design problem.

2. Specification of Conjoint Model for Pair-Wise Metric
Comparison Tasks

We develop a new but simple linear model which allows
estimation of subjects’ part-worths of attribute levels given pair-
wise metric evaluation observations. Throughout the discussion,
three generic subscripts are used: s denotes a subject (s = 1, ...,
S), t denotes a pair-wise evaluation task (t =1, ..., T), and a
denotes an attribute (a=1, ..., A).

Let y,O[-M, M] denote interval or continuous relative
preference scores, measured in a fixed range between -M and M,
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from subject s for a pair of product profiles A and B at pair-wise
comparison task t. Specifically, alternative A is assumed to be
more preferred to alternative B as yg increases. In paired
comparison tasks, preference scores are relative measures, given
pairs of product profiles. Only the differences in attribute levels
across two product profiles matter.

Let L, = {ly1, ..., luna} denote a set of all levels for attribute a.
Given {L,}41, ... n» We defined design vectors for product profiles
A and B at task t, z® and z/P. Let k denote the dimension of
such design vectors. Note that z® and z/P) were the same for all
subjects under the fixed experimental design problem. Then,
define x; = (1, z{)', a(k + 1)-dimensional final design vector with
an intercept term, where z; = z¥W - z® is the difference between
z and z/P. Finally, we assume a linear model as follows:

Yst = Xéﬁs t & Egt ~ N(O, 02)’ (1)

where [, is the subject-specific regression coefficient including
an intercept and &y is the error term distributed with a
univariate normal distribution with mean 0 and variance o2.

The heterogeneity of B, is further modeled as multivariate
normal random effects:

Bs ~Nk+1(uﬂ’zg), )

a (k + 1)-variate normal distribution with mean g and
covariance matrix .

The model specification is completed by introducing the
following priors:

o? ~ IG(a,b), (3)
Hp ~ Niiy(m, V), 4)
S5~ Wi, (d.S). (5)

where IG(a, b) denotes an inverted gamma distribution with
location parameter a and scale parameter b and IW(d, S) denotes
an inverse Wishart distribution with degree of freedom d and ((k
+ 1)x(k + 1)) positive-definite scale matrix S. Note that (a, b, m,
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V, d, S) are known values.

3. Optimal Conjoint Experiment Design for Pair-Wise Metric
Comparison Tasks

The purpose of finding an optimal experimental design is to
improve statistical inference regarding the quantities of interest
by the optimal selection of values for design parameters of
experiments under the control of the researcher within the
constraints of available resources. Bayesian decision theory
provides a mathematical foundation for the selection of such
optimal designs. Optimal experimental design problems in
Bayesian decision theory, proposed by Lindley(1972), are to
maximize expected utility over some design parameter of
experiments given unknown observations. Chaloner and
Verdinelli(1995) and Verdinelli(1992) provided extensive reviews
of Bayesian optimal experimental design problems, focusing on
the traditional experimental design question of choosing
covariates in a regression problem. Following Bayesian decision
theory, we present a methodology for deciding optimal fixed
design for pair-wise metric comparison conjoint experiments.

First, define the following quantities: Let

* Ys = (Ys1» ---» Ysp)' be all relative preference scores of all T

pair-wise comparison tasks for subject s.

*y=(y,, ..., ys)' be a stacked vector of ys.

e x=(xq, ..., x7)' be a (T X(k + 1)) design matrix.

3.1 Formal Definition of Design Problem

In the fixed experiment design problem, T and S are typically
fixed. Then, the only remaining experiment parameter of interest
is x, the design of pairs of product profiles for T comparison
tasks.

Let © denote the set of all possible permutations of all

attribute levels. The size of © is therefore De=£llla when all
attributes are discrete. If there are A-n continuous attributes
among A attributes, then Do= |ila +a-n, Let WY denote a set of all

possible pairs of elements in ©. The size of ¥ becomes
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Dwzgﬁlgpe _22“_1]%/T!, considering ¥ is a set of unordered T pairs

sampled from © without replacement.

Following Lindley’s(1956, 1972) argument, we first need to
specify a suitable utility function, U(x), reflecting the purpose
and cost of the experiment. Given the utility function, the
optimal design of x, x, can be selected so that x maximized
expected utilities. However, since the design parameter x had to
be chosen before obtaining y, we need to maximize the
expectation of U(x) with respect to unobserved y and all
unknown model parameters 6 = (0%, B, U 35), where 8= (B, ...,
Bs')'.

In summary, the task is to find the optimal value of x (W , x,
given unobserved relative preference scores y [0 Y and unknown
model parameters. The design problem can therefore be formally
stated as:

x = arg max U(x), where
U = [ulx.6,y)ply 1 6. x)p(fd&dy, y Ot M, M], (6)

where U(x is the expected utility of x and the expectation was
computed over the posterior distribution of 6 given y and x; and

py16,x)p(6) = ply| B, 0, ) g panyP(BI g, Z )P HE)P(Z ).

Next, the optimal design problem(6) was completed by defining
U(x). Following Lindley’s(1956) suggestions, many studies in
statistics literature have widely used Shannon information for
such utility functions. The Shannon information was found to be
appropriate for inference problems regarding model parameters,
0 or functions of model parameters(e.g., g(fs)). Since major
statistical inference in conjoint experiments is the estimation of
the subject-specific part-worths and the population distribution
of such part-worths, Shannon information measure is suitable
for the purpose of typical conjoint studies. In our case, the
expected utility function based on the expected change in the
Shannon information or equivalently the Kullback-Leibler
distance between the posterior and the prior distributions is:
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pOly, x)
p6)

The prior distribution p(6) does not depend on the design
parameter x. Therefore, the optimal design x maximizing the
expected gain in the Shannon information is the one that
maximizes:

U(x) = log (7)

Ulx) = [log{p(6 1y, x)ip(y | 6. x)p(O)dedy. y Of M, M], ®)

Which involves non-trivial multiple integrals.

Since our pair-wise metric comparison conjoint studies involve
a set of pairs of product profiles, existing approaches for the
optimal experimental design for choice-based conjoint
experiments may be directly applicable to pair-wise metric
comparison tasks. However, as shown in (6) and (8), the
expected utilities must be evaluated over sample space of
unobserved y. Both the format of data, y, and the underlying
model, p(yl 6, x, affect the choice on x. Therefore, the optimal
design produced by existing procedures for choice-based
conjoint study may not be the optimal for the pair-wise
comparison tasks.

3.2 Computation of Expected Utility

The multiple integrals (8) are not trivial largely because of the
random effect specification, (2), (4) and (5). However, it is more
straightforward to compute expected Shannon information by
using simulation-based algorithms(cf., Muller 1998). We adopt a
simulation-based approach for the computation of Ey,, . [log{p(6
ly, ¥}, (8), by using Monte-Carlo approximation as given in
Figure 2. Note that in Step 5, ys;; must be sampled in the range
of [-M, M] since relative preference measures were doubly
truncated at these two points. The values of p(ys? | (62, B?, X for
the computation of U; in Step 6 must therefore be multiplied by
a correction factor r = {(®(M|x; B, 02) — ©(-M|x/Bs, 0%}, where ®
(Mle, f) is the percentile of a point M given a univariate normal
distribution with mean e and variance f.

After Q iterations, the estimate of the expected utility is:



Choosing Optimal Designs for Pair-Wise Metric Conjoint Experiments 73

Given x [W ,

1. Set iteration i = 1

2. Sample ¢? from IG(a, b)

3. Sample pg? and 349, from Ni(m, V) and IW(d, S), where a®
denoted values of quantity a at iteration i.

. Sample B, from N;(ug?, 349 for each s.

. Sample y,? from p(ys?1 (02, B2, x) for each s and t.

. Compute U; = log {log {p(69 |y, x))}.

. Set i=1i+ 1 and repeat Steps 2 to 6 Q times.

N O O b

Figure 2. Monte-Carlo approximation of expected utilities

. Initialize 6© and set x = x©.

. Set iteration i = 1.

. Sample x uniformly from W.

. Given x1, conduct steps given in Figure 2.

I Ox®) = Ox®Y), set x = x0

. Set i =i+ 1 and repeat Steps 3 to 5 till convergence.

D UL WN -

Figure 3. Stochastic search algorithm for the identification of
optimal design

U;.
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After computing U(x) for O x O¥ , we can find the optimal
design x, satisfying U(x) = max U(x.

The Monte-Carlo approximation can find x quickly when Dy is
small. When Dy is large, however, using the Monte-Carlo
approximation is tedious and time-consuming. For this case, we
propose a stochastic search procedure as given in Figure 3. Step
3 in Figure 3 describes random sampling of x from W. However,
other existing search procedures such as shifting(Bunch et al.
1994), swapping(Huber and Zwerina 1996), L,y(Louviere 1988),
relabeling(Huber and Zwerina 1996) and cycling(Sandor and
Wedel 2001) can be used.
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4. lllustration of Proposed Optimal Design Procedure

We demonstrate how to use the proposed method by applying
it to a hypothetical optimal design problem in pair-wise metric
conjoint experiments. We assumed A = 10 and all ten attributes
were binary variables. We also assumed S = 100, T= 16 and M =
10. The size of ©, the number of product profiles under full
factorial design, was therefore Dg = 1024. The parameter values
for priors were set to m = 0, V = 10[,;, e = 2 and F = 10[,,
which were fairly diffuse priors. In this example, the size of W
was quite big: Dy = 9.55e + 77. Therefore, we used the stochastic
search procedure given in Figure 3 in order to find the optimal
set of 16 pairs of product profiles. The number of iterations was
100,000.

Figure 4 presents a trace plot of expected utilities across
100,000 iterations. The expected utilities ranged from -6969.15
to -3388.64 with mean -6111.05 and standard deviation
480.21. Among simulated configurations of x across iterations,
the highest expected utility value was 1.94 times higher than the
lowest. The interval of(mean +* 2 x standard deviation) for
simulated expected utilities was (-7071.47,5150.63), implying
that the distribution of expected utilities was left-skewed, as
shown in Figure 5. Figures 4 and 5 together clearly show that
expected utilities of 100,000 simulated configurations of x were
skewed to the left and only a few configurations of x dominated
others.

We also examined the expected utility when a design matrix x
chosen by a careless researcher did not allow him/her to make
any statistical inferences on subjects’ part-worths. For this case,
we computed the expected utility when x = Opye1)- The
computed expected utility was -4828.62, implying that badly
chosen x produced lower expected utilities and consequently
may lead to inefficient inferences on subjects’ part-worths.
Researchers may wonder how a simulated x can produce lower
expected utilities than the no-learning case. Since in the no-
learning case, x do not contribute to the learning of 6, the
posterior of 6 is determined mainly by its diffuse prior. If there
exists learning from x, the posterior of 8 will depart from its prior
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Figure 4. Trace plot of expected utilities
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Figure 5. Density plot of expected utilities
and be likely to shrink. However, in some cases, a badly chosen

x may not lead to efficient learning but instead increase
uncertainly on 6. As implied by Figure 5, a sizable portion of
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Figure 6. Trace plot of maximum expected utilities

candidate x’s were among such inefficient design matrices.

These findings together highlight the importance of the
experimental design problems in conjoint studies. Since only a
few good configurations of x exist among a large number of
candidates, non-optimal design matrices for x, chosen by
careless researchers, may lead to inefficient statistical inferences
on part-worths. In order to enhance their statistical inferences,
researchers should decide the design matrix carefully. Figure 6
is a trace plot of maximum expected utilities across iterations,
showing that the optimal configuration of x, x, converges
reasonably fast. Note that it was possible that true x was not
visited in our 100,000 iterations, given the fact that Dy was far
greater than the total number of iterations. However, since
incremental gains in terms of expected utilities around iteration
40,000 was relatively small and the maximum expected utility
was unchanged in the remaining 60,000 iterations, we did not
run additional iterations.

The optimal 16 pairs of product profiles found in the 100,000
iterations are given in Figure 7. Figure 7 shows the two binary
levels, O and 1, for each of the 10 attributes. The attribute levels
were redundant for all pairs and the number of attributes levels



Choosing Optimal Designs for Pair-Wise Metric Conjoint Experiments 77

{1110011111,0011000110
{1111110001,0111100111
{1110111011,1010110000
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}

Figure 7. Optimal 16 pairs of product profiles

varying across two product profiles ranged from two to seven.
Note that the redundancy does not cause any problems since in
adaptive conjoint experiments, a small number of attribute levels
differ between two product profiles typically under the condition
that other attribute levels are fixed, as shown in Figure 1.

Conclusion

This paper presented a simulation based-approach to the
optimal design of pair-wise comparison choice experiments.
Following Bayesian decision theory, the design problem was
formally stated and procedures for the identification of the
optimal design were developed. The proposed methodology was
applied to a hypothetical conjoint design problem.

The hypothetical design problem showed that a large number
of candidates for design matrices of attribute levels may not
efficient for statistical inferences on subjects’ true part-worths,
and only a small number of good candidates for design matrices
of attribute levels exists. Therefore, researchers should carefully
choose the optimal design matrix in order to enhance statistical
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inferences even before observing data and the presented
methodology can help researchers find such optimal designs
explicitly.

Even though this paper is the first study on the optimal design
for pair-wise metric conjoint experiments, a variety of other
conjoint studies, such as choice-based conjoint studies, are still
left to be examined. Most previous studies on the optimal design
for choice-based conjoint studies, however, may be far from the
solution since these studies have borrowed optimal design
techniques from regression models, hoping that these
techniques work for the discrete choice conjoint studies. As
discussed before, both the format of data and the underlying
model affect the optimal experimental design. In addition,
customized sequential conjoint experiments have not been fully
studied yet. In a customized sequential experimental design,
sets of product profiles are customized for subjects in a
sequential manner given subjects’ preceding responses. We have
worked on these problems in the context of both pair-wise
metric and choice-based conjoint experiments and will report
them in the near future.
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